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Abstract

Most recent works on optical flow use convex upsam-
pling as the last step to obtain high-resolution flow. In
this work, we show and discuss several issues and limita-
tions of this currently widely adopted convex upsampling
approach. We propose a series of changes, in an attempt
to resolve current issues. First, we propose to decouple the
weights for the final convex upsampler, making it easier to
find the correct convex combination. For the same reason,
we also provide extra contextual features to the convex up-
sampler. Then, we increase the convex mask size by using an
attention-based alternative convex upsampler; Transform-
ers for Convex Upsampling. This upsampler is based on the
observation that convex upsampling can be reformulated as
attention, and we propose to use local attention masks as a
drop-in replacement for convex masks to increase the mask
size. We provide empirical evidence that a larger mask size
increases the likelihood of the existence of the convex com-
bination. Lastly, we propose an alternative training scheme
to remove bilinear interpolation artifacts from the model
output. Our proposed ideas could theoretically be applied
to almost every current state-of-the-art optical flow archi-
tecture. On the FlyingChairs + FlyingThings3D training
setting we reduce the Sintel Clean training end-point-error
of RAFT from 1.42 to 1.26, GMA from 1.31 to 1.18, and
that of FlowFormer from 0.94 to 0.90, by solely adapting
the convex upsampler.

1. Introduction

Current state-of-the-art deep optical flow models [9,
[301[36,138]] is heavily inspired by RAFT [30]. RAFT
applies an iterative, recurrent, optimization and makes this
possible by reducing memory and compute by predicting
flow at 1/8th of the input resolution. This low-resolution
flow map is then upsampled to full resolution. Upsampling
methods for optical flow have different requirements than
traditional image upsampling methods like bilinear interpo-
lation. i.e., if two objects at an edge move in different di-
rections, interpolating them in the middle will give values
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Figure 1. Current optical flow methods ignore fine details. We
show 10 High-detail 64x64 patches from the FlyingThings3D [19]
dataset and compare a recent baseline (GMA [[14]) with adding our
upsampler. Our upsampling better preserves fine details.

around the mean of the two directions. This is never correct
in terms of optical flow; a pixel either follows one object,
or the other. Alternatively, upsampling methods that do not
use interpolation like nearest neighbor upsampling makes
flow edges jagged and not aligned with object edges.

To solve these issues for optical flow, RAFT [30] pro-
poses convex upsampling. There, the main idea is to
upsample by a convex combination of the low-resolution
neighbors: each low-resolution pixel is weighted, where all
weights must be positive and sum to 1, which is easily ob-
tained by applying the softmax function, see 2} Following
the success of RAFT [30]], this convex upsampling is cur-
rently adopted practically unchanged in all current SOTA

flow models [9} 14} 23] 26l 30} 33\ 36, 38] .

In this paper, we make the observation that convex up-
sampling for optical flow has received relatively little atten-
tion in the literature: the design of convex upsampling has
not changed much since RAFT [30].
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Figure 2. Original convex optical flow upsampling as proposed
by RAFT [30]. A high-resolution sub-pixel value is written as a
convex combination of the low-resolution input. The convex mask
weights are guaranteed to be positive and sum to 1 by using soft-
max. This convex upsampling is adopted by the state of the art. We
propose improvements based on the observation that the convex
combination through a softmax can be rephrased as neighborhood
attention [7], leading to increased accuracy, which can be used as
a drop-in replacement for all existing models.

Here, we rephrase the traditional convex upsampling
in a more flexible model using Neighborhood Attention
(NA) [7]. Neighborhood Attention is a natural model for
convex upsampling, as it is also local, and by the softmax
operator inherently provides a convex combination. One of
the benefits is that NA allows to decouple the number of
learnable parameters from the mask size, allowing larger
input sizes.

We have the following contributions. We rephrase con-
vex upsampling as Neighborhood Attention (NA). NA al-
lows us to evaluate larger mask sizes, making more solu-
tions possible. It also allows us to replace the 1-step 8x
upsampling with three hierarchical steps of 2x upsampling,
which helps retain spatial information. The hierarchical
upsampling allows us to also include the input image fea-
tures at matching resolutions, to better align flow with ob-
ject edges. We also investigate decoupling the final upsam-
pling model from the intermediate upsamplings used in the
recurrent optimization. As a final investigation we explore
the role of optical flow sampling in data-augmentation.

Our proposed ideas could theoretically be applied to al-
most every current state-of-the-art optical flow architecture.
On the FlyingChairs + FlyingThings3D training setting we
reduce the Sintel Clean training end-point-error of RAFT
from 1.42 to 1.26, GMA from 1.31 to 1.18, and that of
FlowFormer from 0.94 to 0.90, by solely adapting the con-
vex upsampler. We will make all code available.

2. Related Work

Optical Flow is typically estimated between two consec-
utive frames by matching image-1 to image-2, and the sem-
inal RAFT [30] approach inspired much follow up work.
RAFT uses a gated recurrent unit in a step-wise, recurrent,
optimization process. Because of its computational com-
plexity, the recurrent optimization is done on 1/8th of the
input image resolution, after which the low resolution out-
put flow is upsampled to full resolution. The follow up
work done by GMA [14] adds global attention on the in-
put features to add global, contextual information. Sim-
ilarly, SeparableFlow [36] improves the correlation vol-
ume construction by first ensuring global contextual fea-
tures. This idea is extended by FlowFormer(++) [9, 23],
CRAFT [26] and GMFlowNet [38]] who add strong Trans-
former blocks. Essentially, RAFT is extended by improv-
ing and replacing different components other than the step-
wise optimization, as this optimization approach remains
the global design. So, the current optical flow state of the
art [9, 114} 25} 126,130, 136, 138]] is based on RAFT and inher-
its its main properties: low resolution iterative optimization
followed by upsampling. Here, we focus on these properties
and on the low resolution upsampling in particular.

MS-RAFT(+) [12L[13]] also explores different resolutions
in a setting based on RAFT [30]. Important for us is that the
convex upsampling is different, as they upsample 3 times by
a factor of 2, rather than once by a factor of 8.Inspired by
this, we investigate the impact of this 3-step approach when
used on the other state-of-the-art networks that currently use
a single upsampling operation by factor 8.

Upsampling is fundamental in computer vision tasks.
Non learning-based approaches such as Nearest Neighbor,
bilinear, or bicubic interpolation [[6, 29], and learning-based
approaches such as Transposed convolutions [18], Pix-
elShuffle as used in super resolution [24], or convex upsam-
pling [30]]. Learned-based upsampling can be trained end-
to-end [[18| 24} [30] or progressive as done in GANs [15].
For optical flow, bilinear- or Nearest Neighbor interpola-
tion can be used for decent performance [4, [11}22]] as long
as the upsampling factor is small. All the current SOTA op-
tical flow models [9, 114} 125,126/ 130,133,136,138] require up-
sampling with factor 8. This makes traditional upsampling
unsuitable, and hence convex upsampling is widely adopted
by these models. Here, we extend this reasoning and formu-
late convex upsampling as local self-attention [7]].

Attention and Local Attention Self-attention [31]] used
for image recogition [3] research is bringing back the hi-
erarchical structure of convolutional neural networks. As
such, SwinFormer [[17] was proposed. In a similar way,
Neighborhood Attention (NA) [7] was proposed. While the



general idea of NA is similar to SwinFormer [17]], the main
design difference is how the local attention maps relate to
the queries. NA ensures that as long as a query is not near
the image border, the query is always at the center of the
local attention map. This property makes these local atten-
tion maps effectively similar to convex upsampling masks.
An advantage of local attention maps is that their size is de-
coupled from the number of parameters, so we investigate
the use of attention maps when taken directly as a drop-in
replacement for convex upsampling masks.

3. Method

We show a visual comparison of the baseline convex up-
sampling of RAFT [30] versus our proposed method in
and will explain its modules in the following.

3.1. RAFT’s convex upsampler

Context encoder Most SOTA models for optical flow
use a context encoder that takes image-1 as input, generally
based on a three-scale ResNet [|8] architecture where each
scale has a neural network r; with [ € (0,1, 2) that down-
scales the resolution by factor 2, as follows:

image, /, = ro(image-1) € ROXH/2)x(W/2)) (1)
image, ,, = r1(image, ») € ROCXH/HxW/9) (9
image, ;s = r2(image, ;) € R(28x(H/8)x(W/8)) (3)

Flow predictor The flow predictor takes image, /s and uses
a linear projection to obtain the initial gated recurrent unit
(GRU) internal state hg, as well as the shared input to each
GRU step a. The GRU module is defined as g, and the
optical flow map as flow. We define for image input size
H x W that h = (H/8) and w = (W/8).

ho = Conviy; (image, /) € R(128xhxw) @
a = Conlel(imagel/s) c R(lQSthw) (5)
flowg = O(2xhxw) € R(2xhxw) ©)

The correlation volume ¢(p) in RAFT [30] is defined to pro-
vide the correlation information for a given pixel at spatial
position p. For I refinement iterations the optimization ap-
proach is then defined as following, where flow;_1) is the
final low-resolution output flow.

flowy, h1 = g(ho, a, flowg, c(flowg)) @)
flows, ho = g(h1, a, flowy, c(flowy)) (8)
flow(; 1), h(r—1) = )
g(h(r—2), a,flow g, c(flow;_y)))
with
flow(;_1 € R2x(H/8)x(W/8)) (10)
h-1 € R (128X (H/8)x (W/8)) (11

Mask predictor Now take flow; to be a low-resolution
flow map with hidden state h; where j € (0,1, ..., (I —1)).
For RAFT’s [30] upsampler which is used to upsample the
flow; from size (h x w) to (H x W), a convex combina-
tion of the low-resolution nearby pixels from flow; is used.
That is, for every low-resolution pixel P € flow;, find sub-
pixel values p; by first predicting a 3 x 3 scalar mask,,
for every sub-pixel p;. This mask,,, has 9 scalars values;
mask,, = (wo, w1, ..., W(2—1)) for mask size m = 3. For
a mask centered on low resolution pixel P € flow;, all the
values within the mask including the pixel itself, form the
neighbors of P; called Np € flow;. Then, the value of the
sub-pixel p; is calculated using the dot-product as follow-
ing, for upsampling factor f and mask size m. Furthermore,
o refers to the use of the ReLLU [5]] activation function.

masks = Convix (0(Convss(h;))) € R m?) (12)
masks € RU”xmxm) — magks € R ™) (13)
i€ (0,1,....(f*=1))
(mask;, Np) € R™™)  (14)
p; = (softmax(mask;), Np) € R (15)

3.2. Neighborhood Attention Transformers for
Convex Upsampling

For our attention-based convex upsampler, we start with
the same input h;, but also concatenate image, /8 and flow,
to build the embedding vectors e for all pixels P € flow; as
following.

cat = Cat(h;, image, /5, flow;) (16)
e R(258><h><w)

e = Convyy (cat) € RP*hxw) 17)

Then we apply local Neighborhood Attention Transformers
(NAT) [7] for local contextual feature enhancement, using
2 Transformer blocks which sequentially form 7". For these
Transformer blocks we use dimensionality D = 128 for
scale 1/8, D = 64 for scale 1/4, and D = 32 for scale
1/2. We set the head dimensionality to 32. Note that the
tokens from the embedding vectors e correspond to the low-
resolution pixels P € flow;.

eex = T(e) € RIPXPxw) (18)

Then, for upsampling factor f, multi-head attention is used
to form f2 attention maps for each P (h x w) from eqy €
R(Pxhxw) We use head dimensionality of D such that
we halve the size of the embedding dimensionality for each
upsampling operation. For f2 heads, this requires a query,
key, and value dimensionality of % f2D, which can then be
reshaped to obtain f2 query, key, and value maps with di-
mensionality 1 D.
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Figure 3. Left: the original convex upscaling method as proposed by RAFT [30]. Right: our proposed multi-step Transformer convex
upsampling network. The feature extractor is adopted from RAFT [30] but we extract the features at 3 all intermediate scales. The
Neighborhood Attention Transformer blocks [7]] perform local neighborhood attention to enhance features. Attention is used to both
upsample the low-resolution flow as well as the feature maps. The block at the bottom is executed M times and upsamples by factor 2, and

hence for M = 3 the low-resolution flow is upsampled by factor 8.

Q = Convix (eerx) € Rz /7 Dxhxw) (19)
K = Conviy () € R(3F*Dxhxw) (20)
V = Convy (eex) € R(z/*Dxhxw) (21

(Q. K, V) e RU xaDxhxw) (22)

Then, we construct the local attention maps using neighbor-
hood attention (NA) [7] with window size m. Note that to
obtain these local attention maps (LAM) they are normal-
ized using the softmax [1]] function, so similarly to convex
upsampling masks; the values are positive and sum to 1.

LAM = NAmaps(m7 Q, K) c R@xmxmxhxw) (23)

We then aggregate these local attention maps with the low-

resolution flow, as well as the value features V. Again, we
use neighborhood attention [7] for this.

flow,, = Aggregate(LAM, flow;)

hy, = Aggregate(LAM, V)

(24)
(25)

Note that this aggregation operation on a per-pixel level is
implemented as following, when mask; € LAM,,. where

LAM, refers to the attention maps from LAM before soft-
max normalization.

p; = (softmax(mask;), Np) € R* (26)

So, aggregation as used in local attention is effectively sim-
ilar to convex upsampling, as Equation [I3]and Equation [26]
are equivalent. For both, the dot product is taken within
a sliding window between the convex maps, or attention
maps, and the low-resolution flow, or the values. For sim-
plicity, we ignore the different padding implementation, as
this is not necessarily relevant here.

From Equation we obtain flowy,, which is the by fac-
tor f convex upsampled flow. We also obtain the by factor
f upsampled features h,, based on Equation@

Hierarchical upsampling In the convex upsampling im-
plementation of RAFT as described in Section [3.I] upsam-
pling is done once by factor 8. The most important reason
for this is that convex upsampling expects a feature map and
a low-resolution flow map as inputs. However, it only pro-
vides a single output, namely the upsampling masks; see
Equation [T2} Therefore, the operation cannot easily be re-
peated. For our TCU, this is different. As we can see from



Equations 24] and 25} we have the same inputs as outputs,
but at a different scale. We can effectively repeat this oper-
ation as often as needed, and are able to upsample 3 times
by factor 2, rather than once by factor 8. This has several
advantages, one is a spatial inductive bias; the network only
has to learn the alignment of 4 sub-pixels at the time, rather
than 64 at once.

Adding the input image as extra information Another
advantage of the hierarchical approach as discussed in the
previous paragraph is that it allows for concatenating fea-
ture maps from different scales. Note that from Equations
[T] till 3] we have image features at 3 scales, yet only use the
1/8 scale from Equation [3|as only these are used as inputs
in equations [ and [5] If we adopt our hierarchical method,
we are able to concatenate each of the scales from Equa-
tions (1/2),12/(1/4) and (1/8), to the upsampling step of
our convex upsampling with corresponding scale, as could
be done in Equation [T6

Larger mask size For the traditional convex upsampler,
it is difficult to increase the mask size m due to the use of a
single vector of size m? f? for the mask values, with mask
size m and upsampling factor f. This is because Equation
[12] uses a fully-connected layer for this purpose, and hence
increasing m comes with a strong increase in the number
of parameters, and is difficult to optimize. Fortunately, our
Transformer based Convex Upsampler (TCU) does not have
this problem. As the convex masks are simply local atten-
tion maps, and the size of local attention maps is not depen-
dent on the number of parameters, we can freely increase
the mask size m, as long as it fits in memory.

We use an increased mask size to explore finding new so-
lutions. A strong limitation of convex upsampling is that a
high-resolution pixel can only be predicted correctly if there
exists a convex combination of the low-resolution neigh-
bor pixels Np such that the dot-product forms the desired
output value. Therefore, if the low-resolution flow map
Np is not correct or not locally informative enough and
no such convex combination exist, the desired output value
can never be obtained. We propose to increase the size of
Np and include more low-resolution pixels, rather than just
look at the direct neighbors using a 3 x 3 mask. For our
sequential upsampling steps we use mask sizes (9,7,5), in
that order from low- to high-resolution.

Decoupling the upsampling Many flow prediction ar-
chitectures [9, 14} [25, 26, [30, 136, [38] take a recur-
rent step-wise refinement approach to solve optical flow,
as we describe in Equation [7] till During training, a
loss value is calculated for each intermediate flow map
flowg, flowy, ..., flow(;_1), where each flow map requires to
be upsampled to high resolution in order to compare it to the

ground truth. Many SOTA works [9, (14} 25, [26/[30, 136/ 38]
choose to share the same convex upsampler and its weights
over all steps. However, we consider the first flow predic-
tions to be extremely noisy variants of the final flow. When
the convex upsampler and its weights are shared over all
steps, this is effectively equivalent to just adding strong
noise to a part of the input data. In general, the loss is down-
weighed for the first steps, but this could be insufficient. We
want the convex upsampler of the final output refinement it-
eration to fully focus on its own objective, and not have its
parameters shared with noisy estimates from earlier refine-
ment iterations. To achieve this, we propose to decouple the
convex upsampler of the last refinement iteration and give it
its own weights.

This also brings the advantage that a different upsam-
pling method can be used for the last refinement itera-
tion. Our Transformed-based convex upsampling approach,
TCU, uses more memory than the original convex upsam-
pling approach. So, we exploit the idea of a decoupled up-
sampler for the last refinement iteration to make our TCU
model feasible in practise. Namely, the original shared con-
vex upsampler is used for the first (I — 1) refinement itera-
tions, and TCU is only used for the last refinement iteration
which provides the final model output. Note that at test-
time, only the upsampler of the last refinement iteration is
used.

4. Effect of sampling in data-augmentation

In addition to the architecture change, we also investigate
the training scheme. Noticeably, almost all recent works on
optical flow are based on the same original PyTorch imple-
mentation of RAFT [30], and all use bilinear sampling for
augmentation of their training data. The original reason of
RAFT for convex upsampling was to avoid bilinear upsam-
pling on flow maps. However, in the current setting convex
upsampling is used, but with the learning objective to pre-
dict bilinearly interpolated flow. Interestingly, to the best of
our knowledge, all public top submissions to the Sintel [2]
leaderboard show bilinear interpolation artifacts in the form
of white and non-crisp edges, even though these artifacts
are not in the non-augmented training data. We explore an
additional training scheme to remove bilinear interpolation
artifacts. Disabling this interpolation in the augmentation
is likely not a good idea, as it is used to avoid overfitting.
Instead, we propose an additional training scheme; (-AUG).
There, a trained model is trained for an additional 40K iter-
ations with all interpolation-based augmentations disabled.

5. Experiments

Finetuning The only difference from the original train-
ing setting is the convex upsampler from the last refine-
ment iteration. Training all model components from ran-
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Figure 4. The average end-point-error for increasing amount of
detail on FlyingThings3D (test) [19], after being trained on C+T.
The performance degrades fast for higher amount of detail. To give
an impression of the level of detail per bucket, 6 random patches
from each bucket are shown for FlyingThings3D [19]]. The contri-
bution of each level of detail to the overall EPE is given as well.
Although it is not provided here, the graph for the Sintel [2] dataset
looks almost similar.

dom initialization in this highly similar setting would be
unnecessarily costly. Instead, all the training sessions are
started with pre-trained weights for the flow predictor and
the convex upsampler of the first (I — 1) iterations. Only
the weights of the convex upsampler for the last refinement
iteration are randomly initialized. For all experiments, we
fine-tune for 100K iterations with a batch size of 3, on the
dataset that the model was last trained on. A learning rate
of 1e — 4 is used for the pre-trained weights, and a learning
rate of 2e — 4 is used for the untrained upsampler of the last
refinement iteration. We will make all code available.

5.1. Performance on High-Detail Areas

An important reason for our upsampler is the perfor-
mance on high-detail areas. To investigate this, we look
at the performance on non-overlapping 32 x 32 patches of
the test data. We take the ground truth optical flow and as-
sume the number of edge pixels in the ground truth flow
map to strongly correlate with the amount of details, and
hence with the difficulty for the convex upsampler. We ex-
tract spatial gradients using the Kornia library [23]], and con-
sider the Lo norm on the 4-dimensional vector that comes
from extracting the Oz and Jy gradients for each XY chan-

nel as an edge detector. To obtain a binary edge map, a
binary threshold of 8 is used. To get the level of detail for a
patch, the average value is taken of the binary edge map of
that patch. Next, we plot the average end-point-error (EPE)
for each level of detail, for which a bin width of 0.02 is used.
Samples with level of detail that is larger than the specified
domain are placed in the last bucket.

The results in Figure ] show a strong degrade in accu-
racy for increasing amounts of detail, which confirms that
our hypothetical problem exists. We provide the statistics
on the amount of samples per bucket from Figure ] in Ta-
ble m From this table, note for example that the buckets
(b >= 8) only contain 2% of the patches, yet contribute
for 13% to the end-point-error. This strongly highlights the
importance of our method, as even though the amount of
high-detail patches is low, its impact on the end-point-error
can be significant.

5.2. Transformers for Convex Upsampler

Next, we investigate the impact of the proposed individ-
ual components. +DC refers to decoupling the last refine-
ment’s convex upsampler, and giving it its own weights.
+FT refers to concatenating the features from the context
branch to the input of the convex upsampler. When TCU is
used features are added at all scales, otherwise only the low
resolution features are appended to the input. +TCU(a/b/c)
refers to the use of our Transformers for Convex Upsam-
pling (TCU) with mask size a for the first upsampling step,
b for the second step, and c for the last step. Lastly, -
AUG refers to the additional fine-tuning steps with disabled
interpolation-based augmentations.

FlyingThings3D  We first investigate the performance for
several of our proposed models on the FlyingThings3D [19]
test data, after being trained on C+T. The results hereof are
shown in Figure 5] From this figure we observe that all our
proposed changes result in improvements over the previous
model that did not have the change. This is as expected,
as we do not expect strong relations between each of our
proposed changes, as each of our proposed changes aims
at providing improvements in a different way. While these
results are good, it is also important to consider situations
where this might not be the case. This result is calculated
for the test data of the dataset that the model was trained on,
so there is no measure of cross-dataset generalization here.
For cross-dataset generalization performance, we consider
the performance on Sintel Clean [2], which is done next.

Sintel Clean We create the same graph as before, but
now for the Sintel Clean [2] dataset. The results hereof are
shown in Figure 5] In general, similar patterns as for Fly-
ingThings3D [19] are observed. However, the gap between
with and without (-AUG) is no longer as clear as before.



Statistic Bucket 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
number of samples 200,817 11241 12280 19,340 11,034 6,662 4,896 2985 2,190 1441 1018 721 558 347 281 168 196 111 434
samples (percentage) 793% 3.1% 34% 53% 30% 18% 13% 08% 0.6% 04% 03% 02% 02% 0.1% 0.08% 0.05% 0.05% 0.03% 0.12%
samples (reverse cumulative percentage) 100%  20.7% 17.6% 143% 9.0% 6.0% 42% 2.8% 2.0% 14% 10% 08% 0.6% 04% 03% 02% 02% 0.15% 0.12%
contribution to error (percentage) 44.0% 4.1% 51% 107% 86% 59% 50% 38% 31% 21% 16% 13% 09% 07% 05% 03% 05% 03% 1.6%
contribution to error (reverse cumulative percentage) 100%  56.1% 52%  46.9% 362% 21.6% 21.7% 167% 12.9% 98% 17% 61% 48% 39% 32% 27% 24% 19% 1.6%

Table 1. Distribution of samples over each of the buckets in Figure ] for FlyingThings3D [19].

Dataset: FlyingThings3D (test)

baseline model GMA
improvement GMA+DC (EPE)

improvement GMA+DC+FT (EPE)

improvement GMA+DC+FT+TCU(3/3/3) (EPE)
improvement GMA+DC+FT+TCU(9/7/5) (EPE)
improvement GMA+DC+FT+TCU(9/7/5)-AUG (EPE)

baseline model GMA

improvement GMA+DC (EPE)

improvement GMA+DC+FT (EPE)

improvement GMA+DC+FT+TCU(3/3/3) (EPE)
improvement GMA+DC+FT+TCU(9/7/5) (EPE)
improvement GMA+DC+FT+TCU(9/7/5)-AUG (EPE)
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Figure 5. Improvement in end-point-error for increasing amount of detail on FlyingThings3D (test) [19], Sintel Clean (train) and Sintel
Final (train) [2]] , for a series of our proposed models, after being trained on FlyingChairs (train) [4] and FlyingThings3D (test) [[19].

Method FlyingThings3D Sintel (train) KITTI-15 (train) ~ Number of
Train Test Clean  Final Fl-epe Fl-all  parameters
GMA (recomputed) 10.34 3.07 1.31 275 4.48 16.86 443K
+DC 9.38 2.84 1.23 2.78 4.43 16.89 443K
+DC+FT 9.53 2.86 1.24 2.79 4.55 16.92 743K
+DC+TCU(3/3/3)+FT 9.51 2.73 1.22 2.83 4.52 1680 695K
+DC+TCU(9/7/5)+FT 9.24 275 1.21 2.80 4.36 16.26 700K
+DC+TCU(9/7/5)+FT-aug  8.97 2.61 118 3.01 4.50 16.64 700K

Table 2. Training and generalization performance for our different
convex upsampling approaches. Model names are explained in
Section

Possibly, interpolation artifacts on edges is a good thing
for cross-dataset generalization. Reason for this could be
that interpolation on edges results in the ‘safe choice* for a
model as it provides values around the mean, which then on
average provides similar performance as sharp edges that
are sometimes wrong, when evaluated on the end-point-
error.

An interesting result from this is that increasing the mask
size for TCU from (3/3/3) to (9/7/5) again provides clear
improvements. This, together with the same result for Fly-
ingThings3D [19], provides empirical evidence for our hy-
pothesis that a larger mask size can makes more convex so-
lutions possible, which in turn improves performance.

Sintel Final For Sintel Final [2]] there exist some impor-
tant differences. Mainly, Sintel Final contains many strong
blurring-based effects in an attempt to mimic real-world
camera effects such as motion blur. This introduces a very
important aspect; aligning flow with image edges is not a
good thing. For Sintel Final, we would instead like to have
a model that learns where the actual object edges are based
on an image that contains motion blur. To inspect the perfor-
mance, the same graph as before is generated, but now for
Sintel Final [2]. The results hereof can be found in Figure
Bl As expected, every step we take towards better aligning

flow with objects edges, degrades the models performance
for this dataset. Interestingly, removing the bilinear inter-
polation artifacts from the model output (-AUG) causes a
steep decrease in model performance. Clearly, bilinear in-
terpolation artifacts provide an advantage here. This again
confirms our earlier idea that possibly bilinear interpolation
artifacts on edges are a ‘safe choice* when evaluated with
the end-point-error, as the values are around the mean. If
this is indeed the case, it makes sense that these artifacts
help for strong cross-dataset generalization where edges do
not align with flow.

Overall, our GMA+DC+FT+TCU(9/7/5) model sets a
strong new baseline on all datasets, except Sintel Final. This
is shown in Table 2] While cross-dataset generalization is
an important aspect of optical flow models, we do not be-
lieve it to be realistic to build a model that generalizes to
such impactful motion-blur artifacts that are not at all in
the training data. It is important to note that generalization
to KITTI-15 [21] is good, even though it consists of actual
real-world images, taken by a camera.

General Comparison results are reported in Table [3] for
various settings (e.g. C+T, C+T+S+K+H). While the C+T
setting can be seen as a good measure of cross-dataset
generalization, training with the training data of specific
datasets is also considered interesting. Therefore, we in-
tegrate our approach on GMA [14]] for the C+T+S+K+H
setting. As we observe here, our method can provide an
improvement on Sintel Final as well when the training data
also contains these blurring artifacts, as is the case for this
setting.



Sintel (train)

KITTI-15 (train) Sintel (test) KITTI-15 (test)

Training Data Method Clean  Final  Fl-epe Fl-all Clean  Final  Fl-all

HD3 [35] 3.84 8.77 13.17 24.0 - - -
PWC-Net [27] 2.55 3.93 10.35 33.7 -
LiteFlowNet2 [10] 2.24 3.78 8.97 25.9 -
VCN [34] 2.21 3.68 8.36 25.1 -
MaskFlowNet [37] 2.25 3.61 - 23.1 -
FlowNet2 [11] 2.02 3.54 10.08 30.0 -
DICL-Flow [32] 1.94 3.77 8.70 23.6 -
RAFT [30] 1.43 2.71 5.04 17.4

RAFT (recomputed) 1.42 2.69 5.01 17.5 -

RAFT+ALL (ours) 1.26 2.74 4.92 174 -

RAFT+ALL-aug (ours) 1.28 2.93 4.90 17.5 -

C+T
GMA [14] 1.30 2.74 4.69 17.1 -

GMA (recomputed) 1.31 275 448 16.9 -

GMA+ALL (ours) 1.21 2.77 4.47 17.0 -

GMA+ALL-aug (ours) 1.18 3.01 4.50 16.6 -

SeparableFlow [36] 1.30 2.59 4.60 15.9 -
GMFlowNet [38] 1.14 2.71 4.24 154 -
FlowFormer [9] 1.01 2.40 4,091 1471 -

FlowFormer (recomputed) 0.941 2331 4.241 14.91 -

FlowFormer+ALL (ours) 0.90° 2.34% 4571 15.4% -

FlowFormer+ALL-aug (ours)  0.917 2.37F 4.52f 15.1F - - -
LiteFlowNet2 [10] (1.30) (1.62) (1.47) 4.8) 3.48 4.69 774
PWC-Net+ [28] (1.71) (2.34) (1.50) (5.3) 345 4.60 772
VCN [34] (1.66) (2.24) (1.16) 4.1 2.81 4.40 6.30
RAFT [30] (0.76) (1.22) (0.63) (1.5) 1.61% 2.86* 5.10

C+T+S+K+H
GMA [14] - - - - 1.39% 2.47%* 5.15

GMA (recomputed) (0.63) (1.05) (0.58) (1.3) - - -

GMA+ALL (ours) (0.58) 0.97) (0.62) (1.4) 1.45% 2.44*

GMA+ALL-aug (ours) (0.55) (0.90) (0.58) 1.3) 1.44% 2.47* 5.03

Table 3.

General comparison of our proposed models against other works. Here, ALL refers to our ‘+DC+TCU(9/7/5)+FT* setting.

Furthermore, C+T refers to training on FlyingChairs [4] and then on FlyingThings3D [19]. Next, C+T+S+K+H refers to training on a mix
of data from FlyingChairs [4], FlyingThings [19], Sintel [2], KITTI-15 [21]], and HD1K [16]. The values in parentheses ‘() are calculated
on training data that the model was already trained on. *The warm start strategy is used as described by RAFT [30]. "The tile technique is
used for evaluation as described by FlowFormer [9]. Note that to make training feasible for FlowFormer we do not fine-tune the transformer
models, and only use features from scales 1/4 and 1/8 as scale 1/2 cannot be obtained.

6. Discussion

We observe that our -AUG training scheme decreases
the presence of these artifacts in the model output, as can
be seen in our submission to the Sintel public scoreboard.
Possibly, completely removing these artifacts would require
longer training without augmentations. However, this will
likely cause an overfit to the training data, so we leave a
better solution to this for future work.

Overall, we find good results by reconsidering the de-
sign of the convex upsampler and the bilinear interpolation
on the flow during training. In general, all our methods;
+TCU, +DC, +FT, and -AUG achieve a better fit on the the
training data. This was our initial goal, and therefore we can
confirm that our changes have the desired effect. However,
generalization is an important aspect of optical flow models.
As such, we ask for careful consideration for adopting our
methods when a large generalization gap exists, as in such
case our method may not result in improvements. When
there is no large generalization gap present as is the case for

Sintel Clean, we show in the (C+T) setting that all our pro-
posed changes can provide improvements on a wide variety
of models such as RAFT, GMA, and FlowFormer. We ex-
pect similar improvements for other models that currently
use the original convex upsampling by factor 8.

Lastly, it is important to consider the accuracy of the
edges in the training data. For example, KITTI-15 [21]] has
its flow maps constructed from sensory data, so its exact ac-
curacy on minor details can possibly be off. Sintel Clean
is considered a strong benchmark as the flow map is con-
structed with 100% certainty, and the images form a good
representation of the high-detail edges. Possibly, Spring
[20] would be a good evaluation metric, but unfortunately at
the time of this work, this dataset has not yet been released.
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