
Master Thesis
Computer Science

Artificial Intelligence

Optical Flow Upsamplers Ignore Details:
Neighborhood Attention Transformers for

Convex Upsampling

Alexander Sebastiaan Gielisse

March 2023

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Computer Science

Alexander Sebastiaan Gielisse: Optical Flow Upsamplers Ignore Details:
Neighborhood Attention Transformers for Convex Upsampling (2023)

Supervisors: Dr. J.C. van Gemert
Dr. N. Tömen

Graduation Committee: Dr. J.C. van Gemert (Associate Professor)
Dr S.E. Verwer (Associate Professor)

Acknowledgements

I would like to express my gratitude to my supervisors Dr. van Gemert and Dr. Tömen, for
their time, useful insights and wonderful guidance throughout the project. Next to that, I
would like to thank Dr. Verwer for agreeing to be part of my graduation committee.

I would also like to thank my parents for supporting me. In special, I would like to thank
my father for his willingness to learn new concepts and theories in order to help me better
understand them. And my mother, for her insightful advises and support. I would also like
to thank my girlfriend, Simone, whose willingness to listen to my technical problems and
support me throughout has helped immensely.

Sander Gielisse,
March 2023, Delft.

v

Contents

1 Introduction 1

2 Scientific Article 2

3 Supplementary Material 14
3.1 Traditional Optical Flow . 14
3.2 Learning-Based Optical Flow . 14
3.3 Datasets . 15

3.3.1 FlyingChairs . 16
3.3.2 FlyingThings3D . 16
3.3.3 Sintel . 16
3.3.4 KITTI . 17

3.4 Prior Knowledge . 18
3.5 Deep Learning . 20

3.5.1 Learning-based Models . 20
3.5.2 Objective . 20
3.5.3 Deep Neural Network Layers . 26
3.5.4 Vanishing Gradients and Normalization 28
3.5.5 Skip Connections . 29
3.5.6 Regularization . 30
3.5.7 Weight Initialization . 31
3.5.8 Convolutions . 32
3.5.9 Recurrent Neural Networks . 33
3.5.10 Attention . 34
3.5.11 Transformers . 36
3.5.12 Receptive Field . 37
3.5.13 Vision Transformers . 38
3.5.14 Hierarchical Transformers . 38

3.6 Deep Learning for Optical Flow . 39
3.6.1 Correlation Volumes . 39
3.6.2 Feature Extraction . 39
3.6.3 Optical Flow as Optimization . 39
3.6.4 Upsampling . 40

vii

1 Introduction

The problem of optical flow has long been seen as a fundamental and difficult computer
vision problem. The optical flow problem is defined as finding the displacement vector for
every pixel in image1, with respect to a subsequent image2. Traditional methods for solv-
ing optical flow were generally based on predefined mathematical constraints, but this has
numerous issues. More recently, a strong increase in performance was found by formulat-
ing optical flow as a learning-based approach. In learning-based approaches, a learnable
model is defined with optical flow as the learning objective. There no longer exists the need
for predefined constraints. While this sets a strong new baseline, there exist some unsolved
challenges. One of these challenges is the computational complexity of current-day learning-
based optical flow models. Processing high-resolution images quickly becomes costly, which
makes it infeasible to use them for training or use them in practise. As a solution, almost
all current-day optical flow models predict flow at a lower resolution that is factor 8 smaller
than the input. The final high-resolution flow is then obtained via upsampling. Unfortu-
nately, traditional upsampling approaches such as bilinear or nearest neighbor interpolation
have properties that makes them unsuitable for upsampling optical flow. To resolve these
issues, convex upsampling was proposed. While convex upsampling improves performance
compared to traditional upsamplers, we believe there to remain some shortcomings. Mostly,
these shortcomings apply to areas with high amounts of detail, as we will show in our
scientific article.

The first section of this thesis consists of a scientific article in ICCV format, which we will
try and submit to ICCV 2023. This article is written with the target audience to be an expert
in computer vision related theories and practises. In order for a more general reader to
be able to understand it, supplementary information might be needed. We provide this
supplementary information in Section 3.

1

2 Scientific Article

The scientific article starts on the next page due to its fixed full-page ICCV format.

2

Optical Flow Upsamplers Ignore Details:
Neighborhood Attention Transformers for Convex Upsampling

A.S. Gielisse
Computer Vision Lab, Delft University of Technology

Abstract

Most recent works on optical flow use convex upsam-
pling as the last step to obtain high-resolution flow. In this
work, we show and discuss several issues and limitations of
this currently widely adopted convex upsampling approach.
We propose a series of changes, inspired by the observa-
tion that convex upsampling as currently implemented per-
forms badly in high-detail areas. We identify three possible
causes; wrong training data, the non-existence of a convex
combination, and the inability of the convex upsampler to
find the correct convex combination.

We propose several ideas in an attempt to resolve current
issues. First, we propose to decouple the weights for the fi-
nal convex upsampler, making it easier to find the correct
convex combination. For the same reason, we also provide
extra contextual features to the convex upsampler. Then,
we increase the convex mask size by using an attention-
based alternative convex upsampler; Transformers for Con-
vex Upsampling. This upsampler is based on the observa-
tion that convex upsampling can be reformulated as atten-
tion, and we propose to use local attention masks as a drop-
in replacement for convex masks in order to increase the
mask size. We provide empirical evidence that a larger mask
size increases the likelihood of the existence of the convex
combination. Lastly, we propose an alternative training
scheme to remove bilinear interpolation artifacts from the
model output.

We investigate whether an increase in accuracy can be
achieved while leaving the low-resolution flow prediction
architecture unchanged. Due to that, our proposed ideas
could theoretically be applied to almost every current state-
of-the-art optical flow architecture. On the FlyingChairs +
FlyingThings3D training setting we reduce the Sintel Clean
training end-point-error of GMA from 1.31 to 1.18, which
is a 10% decrease caused solely by changes regarding the
convex upsampler.

Figure 1. High-detail 64 × 64 patches from the FlyingThings3D
[19] dataset where performance difference is clearly visible. We
find 128 high-detail patches using our edge detection approach as
described in Section 4.1, after which we manually choose 10 for
preview.

1. Introduction

In recent years, optical flow prediction using deep learn-
ing has seen a strong increase in accuracy. Unfortunately,
one of the problems of optical flow prediction is the com-
putational complexity. Due to this complexity, the current
state-of-the-art (SOTA) models [10, 15, 25, 28, 31, 34, 36]
predict flow at 1/8th of the full resolution. Obtaining the
high-resolution flow map is then achieved by upsampling
the low-resolution flow map. Upsampling methods for up-
sampling optical flow maps ideally have different properties
than is provided by traditional upsampling methods like bi-
linear interpolation or nearest neighbor upsampling. If two
objects at an edge move in different directions, interpolat-
ing them in the middle will give values around the mean of
the two directions. This is never correct in terms of optical
flow; a pixel either follows one object, or the other. Al-
ternatively, interpolation methods that do not use interpola-
tion like nearest neighbor upsampling could be used. Near-
est neighbor interpolation when upsampling by factors of 2

Figure 2. Original convex upsampling as proposed by RAFT [28].
A high-resolution sub-pixel value is written as a convex combina-
tion of the low-resolution neighbors, including itself.

simply sets sub-pixel values to be the same as the ‘parent‘
low-resolution pixel. Unfortunately, this has the problem of
the flow edges becoming jagged and not aligned with object
edges.

To solve these issues, RAFT [28] proposes convex up-
sampling. There, the main idea is to take a convex combi-
nation of the direct neighbors of a pixel. A visual example
hereof is provided in Figure 2. That is, for every pixel P ,
find sub-pixel values pi by first predicting a 3 × 3 scalar
maskpi for every sub-pixel pi. This maskpi has 9 scalars
values; maskpi

= (w0, w1, ..., w(m2−1)) for mask size m.
Rxr,yr

denotes the value of a relative low-resolution neigh-
bor. All these relative direct neighbors together, including
the pixel itself, form the neighbors of P , called NP . Then,
the value of the sub-pixel pi is calculated using the dot-
product as following.

pi = ⟨maskpi
, NP ⟩ (1)

While so far this approach can already be used for up-
sampling, it uses a linear combination, and not a convex
combination. For convex upsampling, a convex combina-
tion must be used, which means that the restriction is added
that all weights must be positive and sum to 1. Fortunately,
this is easily obtained by applying the softmax [2] function
on each maskpi

. On a high level, this allows the network to
‘choose‘ which low-resolution pixels to follow, by predict-
ing scalar mask values maskpi

as part of the model output.
By predicting the masks as part of the model output,

the network can learn to avoid including multiple neigh-
bor pixels that have different directions, and thereby avoid
strong interpolation. Due to the accuracy of convex upsam-
pling compared to the traditional approaches, convex up-
sampling is currently adopted in all current SOTA models
[10, 15, 25, 28, 31, 34, 36] for optical flow.

In this work, we investigate three main possible causes
for decreased performance of the convex upsampling
method as currently implemented. We first provide our rea-
soning for each of these three causes based on Equation
1. That is; either pi is trained against the wrong objective,

maskpi
contains wrong values, or NP is incorrect or insuf-

ficiently representative.

1.1. Wrong Training Data

Noticeably, almost all recent works on optical flow are
based on the same original PyTorch implementation of
RAFT [28], and all use bilinear sampling for augmentation
of their training data. While this on itself is not a prob-
lem for image1 and image2, it does create difficulties for
the ground truth flow. The main reason for the proposal of
convex upsampling was mostly so that no bilinear upsam-
pling on flow maps had to be done. However, in the current
setting convex upsampling is used, but with the learning
objective to predict bilinearly interpolated flow. Interest-
ingly, to the best of our knowledge, all public submissions
to the Sintel [3] leaderboard show bilinear interpolation arti-
facts in the form of white and non-crisp edges, even though
these artifacts are not in the non-augmented training data.
We wonder whether this bilinear interpolation artifact in the
submissions is caused bilinear interpolation in the augmen-
tation.

1.2. Difficulty Predicting the Convex Combination

Predicting a convex maskpi
for a sub-pixel pi of low-

resolution pixel P is the main learning objective of the
convex upsampler. When upsampling by factor f , a low-
resolution pixel gets f2 sub-pixels pi. Predicting f2 masks
of size 3 × 3 has its challenges, especially in areas with
many small details. If the upsampler is unable to predict
the correct mask, the output will be incorrect, even though
a correct convex combination might actually exist. Next,
we consider why a trained model would be unable to find a
correct convex combination if it exists.

1.2.1 Incomplete Input Features

A possible reason for the convex upsampler to predict the
wrong convex mask while a correct convex mask exists,
would be if the correct mask can simply not be predicted
from the input data of the convex upsampler. In such case,
the convex upsampler has an impossible objective; it cannot
know the correct answer based on the input.

1.2.2 Lack of Inductive Spatial Bias

In convex upsampling as currently implemented, masks are
predicted as a single vector of size m2f2, for mask size
m = 3 and upsampling factor f = 8. This fully-connected
approach does not allow for any spatial inductive bias to be
hard-coded into the model. This makes it more difficult to
learn the mask prediction problem given the limited com-
plexity of the convex upsampler.

1.2.3 First Steps are Noisy Variants

Another possible problem is that many flow prediction ar-
chitectures take a multi-step approach. There, each step can
be seen as a refinement step of the low-resolution flow. Af-
ter several refinements, the final flow is obtained. To train
the network, each step is supervised. That is, a loss is cal-
culated for each intermediate flow map. To compare the
low-resolution output of each step with the ground truth
flow, the low-resolution flow maps are upsampled to high
resolution using the convex upsampler. Many SOTA works
[10, 15, 25, 28, 34, 36] choose to share the same convex
upsampler and its weights over all steps. However, we con-
sider the first flow predictions to be extremely noisy vari-
ants of the final flow. When the convex upsampler and its
weights are shared over all steps, this is effectively equiva-
lent to just adding strong noise to a part of the input data.
In general, the loss is down-weighed for the first steps, but
this could be insufficient.

1.3. Existence of a Convex Combination

For our last possible cause for decreased performance,
we consider that a strong limitation of convex upsampling is
that a high-resolution pixel can only be predicted correctly
if there exists a convex combination of the low-resolution
neighbor pixels NP such that the dot-product ⟨maskpi , NP ⟩
forms the desired output value. Therefore, if the low-
resolution flow map NP is not correct or not locally infor-
mative enough and no such convex combination exist, the
desired output value can never be obtained. Note that this
is not due to maskpi being incorrect. Namely, from the per-
spective of the convex upsampler, this is again an impos-
sible objective as there exist no solution for the given NP .
One possible way to overcome this is to improve the under-
lying low-resolution flow predictor such that the values of
NP ensure that the convex combination exists, but this is
difficult and the problem cannot be easily defined.

1.4. Main Contributions

In this work, we provide several main contributions,
which are listed below.

• An alternative training scheme to remove bilinear in-
terpolation artifacts from the model predictions.

• Decoupling the convex upsampler and its weights for
the last refinement step, to avoid noisy early steps from
influencing the upsampler of the last refinement step.

• Adding more input features to the convex upsampler at
multiple scales, to better align flow with object edges.

• A 3-step Transformer-based hierarchical convex up-
sampling method, that uses local attention maps as a
drop-in replacement for convex upsampling masks.

• Analysis on the performance of our proposed ideas,
based on the level of detail in a patch.

2. Related Work
2.1. Optical Flow

In many recent SOTA models [10, 15, 25, 28, 34, 36]
optical flow is formulated as an optimization problem.
Here, a single resolution flow is kept throughout, which is
step-wise optimized. RAFT [28] was the first optical flow
model to use a gated recurrent unit (GRU) [4] and use it
to mimic a step-wise optimization process. Given an initial
displacement of (0, 0) for every pixel, the GRU is given the
objective to provide a ∆flow repeatedly, based on the infor-
mation with respect to the current location. This drastically
reduces the search space compared to earlier works, and can
provide highly accurate flow. Due to running on 1/8th of
the resolution, upsampling is needed as the last step. While
their initial work used bilinear upsampling, it was noted to
be sub-optimal, and hence their proposal for convex upsam-
pling followed.

Following RAFT, GMA [15] proposes the use of global
attention on the features of image1 to better estimate hid-
den motions. If objects from image1 have no matches in
image2, the ability to correctly predict the flow will de-
pend strongly on the global contextual understanding. This
model is used as a general baseline among most of our ex-
periments.

FlowFormer [10] and GMFlowNet [36] both take atten-
tion one step further, and incorporate Transformer blocks
[29, 17] in their network design. By stacking several Trans-
former blocks, they enhance their features and make them
more contextual, which for their objective shows to be ben-
eficial as they show to strongly outperform the earlier set
benchmarks of RAFT [28] and GMA [15]. GMFlow [31]
takes the idea of using Transformers a step further and does
not use any step-wise optimization approach, but solely uses
contextual image features to construct the correlation vol-
ume and directly extract optical flow.

MS-RAFT(+) [13, 14] tries to increase performance by
taking another approach. Their work is based on RAFT
[28], but as a multi-scale approach with different resolu-
tions, or scales. Important for us is that the convex upsam-
pling is different, as they upsample 3 times by a factor of 2,
rather than once by a factor of 8.

2.2. Upsampling

In general, upsampling optical flow using traditional up-
sampling by a low factor like 2 is not necessarily a big
problem with respect to the error, as the resulting artifacts
are small. Therefore, methods like FlowNet [6], FlowNet2
[12], and SpyNet [21] that already output flow at a relatively
high resolution, simply adopt traditional upsampling like
bilinear- or nearest neighbor interpolation. All the current
SOTA models [10, 15, 25, 28, 31, 34, 36] output signifi-
cantly lower-resolution flow. The upsampling that follows

is often by factor 8, which makes traditional upsampling un-
suitable, and hence convex upsampling is widely adopted.

2.2.1 Super Resolution

Repeatedly upsampling feature maps to high resolution can
become costly in terms of memory. In super resolution, a
similar problem exists. ESPCN [24] proposes to directly
interpret different channels in a low-resolution feature map
as sub-pixel values. By doing so, an r2-dimensional feature
map can be reshaped to a 1-dimensional feature map that
is factor r larger in both the height and width dimension.
Effectively convex upsampling is similar, as it simply pre-
dicts f2 low-resolution flow maps that are merged together
to obtain high-resolution flow that is factor f larger.

2.3. Attention and Local Attention

Attention was proposed as part of the Transformer ar-
chitecture [29]. A great advantage of attention is that it is
global, rather than local as is the case with convolutions. In
an attempt to bring Transformers to images, Vision Trans-
former (ViT) [5] were proposed. By directly inputting flat-
tened non-overlapping image patches, the ViT is able to
model the entire global context. Unfortunately, ViT lack
a strong inductive bias, and high performance is often only
achieved for enormous datasets and incredibly long train-
ing. To resolve this, research has aimed at bringing back
the hierarchical structure of convolutional neural networks.
As such, SwinFormer [17] was proposed. There, the authors
gradually reduce the image resolution while increasing the
dimensionality, similar to how this is often done in convo-
lutional neural networks. To make this approach computa-
tionally feasible and to focus on local features first, global
attention is reduced to local attention; attention is done in-
side of a sliding window. In a similar way, Neighborhood
Attention (NA) [8] was proposed.

3. Method
3.1. Increasing Mask Size

Improving the low-resolution flow map and thus the di-
rect neighbors of a pixel NP is difficult, and has already
received great attention in recent works. Instead, we in-
vestigate a different approach. We propose to simply in-
crease the size of NP and include more low-resolution pix-
els, rather than just look at the direct neighbors using a 3×3
mask. By allowing more values to be included in the con-
vex combination, the problem that the convex combination
does not exist becomes less likely. However, increasing the
mask size is not straightforward as the current convex up-
sampler predicts all masks in a single vector which has size
m2f2 for mask size m and upsampling factor f . Due to
this vector being predicted in a fully-connected manner, di-

rectly increasing the mask size m comes with a too strong
increase in the number of parameters.

3.1.1 Convex Combination using Attention

As a way of increasing the mask size without increasing
the number of parameters, we consider attention maps. The
masks as generated by the convex upsampler as proposed by
RAFT [28] are normalized using softmax [2] to ensure they
are positive and sum to 1. This same logic is used for at-
tention maps [29]. Something that is considered useful here
is that for attention the number of parameters is decoupled
from the size of the attention map. This is because attention
only uses a pixel-wise key, query and value function which
are shared by all pixels in the input. We propose to simply
use attention maps as a drop-in replacement for the convex
masks, as they have the same mathematical properties. By
doing so, an alternative formulation of convex upsampling
is obtained where the number of parameters is decoupled
from the mask size, and so the mask size can be increased
without any increase in the number of parameters. Note that
attention maps are generally as large as the whole input im-
age. To reduce the size of the attention maps, we adopt local
attention instead, where we set the local attention window
size to the desired mask size m.

3.2. Architecture Components

To explain our overall method, we first make it explicit
by providing a visual overview in Figure 3. We refer
to this approach as Transformers for Convex Upsampling
(TCU). Next, the individual components are described and
explained.

3.2.1 Context Encoder

Possibly, the correct mask can simply not be predicted
from the input data of the convex upsampler. Therefore,
we investigate whether adding more features helps. The
input image1 cannot be directly concatenated to the in-
put of the convex upsampler, due to the image1 of size
(h × w) being factor f larger than the input of the con-
vex upsampler of size (h/f ×w/f). However, most SOTA
[10, 15, 25, 28, 31, 34, 36] models have some form of a
context encoder, which is generally a shallow ResNet [9]
architecture. As the output, the context encoder provides
an encoded format of image1 with matching resolution 1/8.
We propose to concatenate these features to the input of the
convex upsampler.

3.2.2 Transformers for Convex Upsampling

Now we consider our attention-based convex upsampler.
First, internal1/8 is defined as the output state of the low-
resolution flow predictor, which could be any recent op-

Figure 3. Left: the original convex upscaling method as proposed by RAFT [28]. Right: our proposed multi-step Transformer convex
upsampling network. The feature extractor is adopted from RAFT [28] but we extract the features at 3 all intermediate scales. The
Neighborhood Attention Transformer blocks [8] perform local neighborhood attention to enhance features. Attention is used to both
upsample the low-resolution flow as well as the feature maps. The block at the bottom is executed M times, and hence for M = 3 the
low-resolution flow is upsampled by factor 8.

tical flow model. Then, internal1/8 is concatenated with
image1/8 and flow1/8. This concatenated feature map is
fed into Ni = 2 subsequent Transformer blocks for feature
enhancement. From the thereby obtained features, a linear
projection is used to obtain the key, query, and value, as
needed for attention. Here, 4 attention heads are used as
this results in 4 sub-pixels and hence upsamples by factor
2. Then, 4 local attention maps are constructed using the
key and query vectors. These are aggregated with both the
local values from the value function, as well as the local
current flow. The same attention maps are used for both
aggregations. The reason for this is that the flow vector is
calculated via a convex combination of other flow vectors,
which makes it only natural to construct the corresponding
feature vector in the same manner. The double aggrega-
tion provides two outputs; 4 feature maps, and 4 flow maps.
By interpreting each of these 4 maps as sub-pixels, an up-
sampled feature map as well as an upsampled flow map is
obtained, both upsampled by factor f = 2. Then, the fea-
tures for the new scale are concatenated, and the steps are
repeated. For f = 8, this can be obtained using M = 3.

Note that this approach also allows for adding additional
multi-scale input features. While the context encoder nor-
mally only outputs scale 1/8, we also extract features from
scales 1/4 and 1/2. We concatenate these additional fea-
tures to the input of the convex upsampler between sub-
sequent convex upsampling operations. Next to that, this

multi-step approach also provides a stronger spatial induc-
tive bias, as the network only has to learn the relative posi-
tion of 4 sub-pixels at the time, rather than all 64 sub-pixels
at once.

3.2.3 Neighborhood Attention Transformers

For the Transformer blocks Neighborhood Attention Trans-
former (NAT) [8] are used. These NAT layers use layer
normalization [1], kernel size m, multi-head attention with
k-heads, and a head dimensionality of dhead = 32. The
number of heads is set to k based on the dimensionality d
of the block as k = d/dhead. For each block a different
dimensionality is used; (128, 64, 32) in that order. Relative
position bias [7, 8, 17, 23] is used to encode relative posi-
tion, as standalone Transformers have no notion of relative
or absolute spatiality. Unfortunately, this couples the mask
size to the number of parameters again, as the bias matrix
has (2m− 1)2 parameters for each attention head, where m
is the mask size. However, the number of parameters that
follow from this is small compared to the overall model, so
it is not considered a problem.

3.3. Network and Training Details

3.3.1 Decoupled Upsampler for Last Refinement

By design, the step-wise optimization architectures [10, 15,
25, 28, 34, 36] supervise the output of every refinement

step, effectively running the convex upsampler n× I times,
where n is the batch size, and I is the number of steps, or
iterations. However, we take a different approach, as we
want the convex upsampler of the final output refinement it-
eration to fully focus on its own objective, and not have its
parameters shared with noisy estimates from earlier refine-
ment iterations. To achieve this, we propose to decouple the
convex upsampler of the last refinement iteration and give it
its own weights.

This also brings the advantage that a different upsam-
pling method can be used for each refinement iteration.
Our convex upsampling approach, TCU, uses more mem-
ory than the original convex upsampling approach. So, we
exploit the idea of a decoupled upsampler for the last re-
finement iteration to make our TCU model feasible in prac-
tise. Namely, the original shared convex upsampler is used
for the first (I − 1) refinement iterations, and TCU is only
used for the last refinement iteration which provides the fi-
nal model output. Note that at test-time, only the upsampler
of the last refinement iteration is used.

3.3.2 Optimization Settings

The training settings and AdamW [18] optimizer, as well
as the L1 loss function, are adopted from RAFT [28] and
GMA [15]. During training 12 refinement iterations are
used for the underlying step-wise flow predictor, which at
test time is increased to 32 for Sintel [3] and to 24 for all
other datasets [28].

3.3.3 Fine-tuning

Our training setting is highly similar to the original train-
ing setting. The only difference is the convex upsampler
from the last refinement iteration. Training all model com-
ponents from random initialization in this highly similar set-
ting would be unnecessarily costly. Instead, all the training
sessions are started with pre-trained weights for the flow
predictor and the convex upsampler of the first (I − 1) it-
erations. Only the weights of the convex upsampler for the
last refinement iteration are randomly initialized. For all
experiments, we fine-tune for 100K iterations with a batch
size of 3, on the dataset that the model was last trained on.
A learning rate of 1e−4 is used for the pre-trained weights,
and a learning rate of 2e − 4 is used for the untrained up-
sampler of the last refinement iteration.

3.3.4 No Bilinear Augmentations

An additional training scheme is used to remove bilinear in-
terpolation artifacts that are caused by training on bilinearly
interpolated flow. Disabling this interpolation in general is
likely not a good idea, as it is used to avoid overfitting. In-
stead, we propose an additional training scheme; (-AUG).

Figure 4. The average end-point-error for increasing amount of
detail on FlyingThings3D (test) [19], after being trained on C+T.
The performance degrades fast for higher amount of detail. To give
an impression of the level of detail per bucket, 6 random patches
from each bucket are shown for FlyingThings3D [19]. The contri-
bution of each level of detail to the overall EPE is given as well.
Although it is not provided here, the graph for the Sintel [3] dataset
looks almost similar.

There, a trained model is trained for an additional 40K iter-
ations with all interpolation-based augmentations disabled,
after being trained as described in Section 3.3.3.

3.3.5 Dataset Notations

Among the experiments different datasets are used. C+T
refers to training on FlyingChairs [6] and then on FlyingTh-
ings3D [19]. C+T+S+K+H refers to training on a mix
of data of FlyingChairs [6], FlyingThings [19], Sintel [3],
KITTI-15 [20] and HD1K [16].

4. Experiments

4.1. Performance on High-Detail Areas

In areas with no details, the convex upsampler has a re-
markably easy task, simply due to the low-resolution flow
being smooth, and hence the convex mask weights not being
of large importance. The important reason for our proposed
alternative convex upsampler is with regards to improved
performance on high-detail areas, as we expect the convex
upsampler to fail on these areas. To investigate this, we do
not build a new dataset for this purpose, but instead look
at the performance on non-overlapping 32 × 32 patches of
the test data. For these patches, we look at the ground truth
optical flow. We assume the number of edge pixels in the
ground truth flow map to strongly correlate with the amount

Statistic Bucket 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
number of samples 290,817 11,241 12,280 19,340 11,034 6,662 4,896 2,985 2,190 1,441 1,018 721 558 347 281 168 196 111 434
samples (percentage) 79.3% 3.1% 3.4% 5.3% 3.0% 1.8% 1.3% 0.8% 0.6% 0.4% 0.3% 0.2% 0.2% 0.1% 0.08% 0.05% 0.05% 0.03% 0.12%
samples (reverse cumulative percentage) 100% 20.7% 17.6% 14.3% 9.0% 6.0% 4.2% 2.8% 2.0% 1.4% 1.0% 0.8% 0.6% 0.4% 0.3% 0.2% 0.2% 0.15% 0.12%
contribution to error (percentage) 44.0% 4.1% 5.1% 10.7% 8.6% 5.9% 5.0% 3.8% 3.1% 2.1% 1.6% 1.3% 0.9% 0.7% 0.5% 0.3% 0.5% 0.3% 1.6%
contribution to error (reverse cumulative percentage) 100% 56.1% 52% 46.9% 36.2% 27.6% 21.7% 16.7% 12.9% 9.8% 7.7% 6.1% 4.8% 3.9% 3.2% 2.7% 2.4% 1.9% 1.6%

Table 1. Distribution of samples over each of the buckets in Figure 4 for FlyingThings3D [19].

Method FlyingThings3D Sintel (train) KITTI-15 (train) Number of
parametersTrain Test Clean Final F1-epe F1-all

GMA (recomputed) 10.34 3.07 1.31 2.75 4.48 16.86 443K
+DC 9.38 2.84 1.23 2.78 4.43 16.89 443K
+DC+FT 9.53 2.86 1.24 2.79 4.55 16.92 743K
+DC+TCU(3/3/3)+FT 9.51 2.73 1.22 2.83 4.52 16.80 695K
+DC+TCU(9/7/5)+FT 9.24 2.75 1.21 2.80 4.36 16.26 700K
+DC+TCU(9/7/5)+FT-aug 8.97 2.61 1.18 3.01 4.50 16.64 700K

Table 2. Training and generalization performance for our different
convex upsampling approaches. Model names are explained in
Section 4.2.

of details in the flow map, and hence with the difficulty for
the convex upsampler. We extract spatial gradients using
the Kornia library [22], and consider the L2 norm on the 6-
dimensional vector that comes from extracting the dx and
dy gradients for each RGB channel as an edge detector. To
obtain a binary edge map, a binary threshold of 8 is used
where smaller values are set to 0 and larger values are set to
1. To get the level of detail for a patch, the average value is
taken of the binary edge map of that patch. Next, we plot
the average end-point-error (EPE) for each level of detail,
for which a bin width of 0.02 is used. All samples with
level of detail that is larger than the specified domain are
placed in the last bucket. The results hereof are provided in
Figure 4.

As we observe from the figure, the performance strongly
degrades for increasing amounts of detail, which confirms
that our hypothetical problem exists. We provide the statis-
tics on the amount of samples per bucket from Figure 4 in
Table 1. From this table, note for example that the buckets
(b >= 8) only contain 2% of the patches, yet contribute
for 13% to the end-point-error. This strongly highlights the
importance of our method, as even though the amount of
high-detail patches is low, its impact on the end-point-error
can be significant.

4.2. Transformers for Convex Upsampler

Next, we investigate the impact of the proposed individ-
ual components. +DC refers to decoupling the last refine-
ment’s convex upsampler, and giving it its own weights.
+FT refers to concatenating the features from the context
branch to the input of the convex upsampler. When TCU is
used features are added at all scales, otherwise only the low
resolution features are appended to the input. +TCU(a/b/c)
refers to the use of our Transformers for Convex Upsam-
pling (TCU) with mask size a for the first upsampling step,
b for the step, and c for the last step. Lastly, -AUG refers to
the additional fine-tuning steps with disabled interpolation-
based augmentations.

Figure 5. Improvement in end-point-error for increasing amount
of detail on FlyingThings3D (test) [19] for a series of our proposed
models.

4.2.1 FlyingThings3D

We first investigate the performance for several of our pro-
posed models on the FlyingThings3D [19] test data, after
being trained on C+T. The results hereof are shown in Fig-
ure 5. From this figure we observe that all our proposed
changes result in improvements over the previous model
that did not have the change. This is as expected, as we do
not expect strong relations between each of our proposed
changes, as each of our proposed changes aims at providing
improvements in a different way. While these results are
good, it is also important to consider situations where this
might not be the case. Note that this result is calculated for
the test data of the dataset that the model was trained on,
so there is no measure of cross-dataset generalization here.
For cross-dataset generalization performance, we consider
its performance on Sintel Clean [3], which is done next.

4.2.2 Sintel Clean

We create the same graph as before, but now for the Sintel
Clean [3] dataset. The results hereof are shown in Figure
6. In general, similar patterns as for FlyingThings3D [19]
are observed. However, the gap between with and without
(-AUG) is no longer as clear as before. This is somewhat
unexpected, as we do not consider bilinear interpolation ar-
tifacts in the flow maps of the training data to be a good
thing. Possibly, interpolation artifact on edges is a good
thing for cross-dataset generalization. Reason for this could
be that interpolation on edges results in the ‘safe choice‘ for
a model as it provides values around the mean, which then

Figure 6. Improvement in end-point-error for increasing amount
of detail on Sintel Clean (train) [3] for a series of our proposed
models.

on average provides similar performance as sharp edges that
are sometimes wrong, when evaluated on the end-point-
error. We find a similar result in the fact that GMA+DC
outperforms GMA+DC+FT. Making it easier to align edges
is apparently not always a good thing for cross-dataset gen-
eralization.

An interesting result from this is that increasing the mask
size for TCU from (3/3/3) to (9/7/5) again provides clear
improvements. This, together with the same result for Fly-
ingThings3D [19], provides empirical evidence for our hy-
pothesis that a larger mask size can increase the likelihood
of the existence of the convex combination, which in turn
improves performance.

4.2.3 Sintel Final

For Sintel Final [3] there exist some important differences.
Mainly, Sintel Final contains many strong blurring-based
effects in an attempt to mimic real-world camera effects
such as motion blur. This introduces a very important as-
pect; aligning flow with image edges is not a good thing.
For Sintel Final, we would instead like to have a model that
learns where the actual object edges are based on an im-
age that contains lots of motion blur. To inspect the perfor-
mance, the same graph as before is generated, but now for
Sintel Final [3]. The results hereof can be found in Figure
7. As expected, every step we take towards better aligning
flow with objects edges, degrades the models performance
for this dataset. Interestingly, removing the bilinear inter-
polation artifacts from the model output (-AUG) causes a
steep decrease in model performance. Clearly, bilinear in-
terpolation artifacts provide an advantage here. This again
confirms our earlier idea that possibly bilinear interpolation
artifacts on edges are a ‘safe choice‘ when evaluated with
the end-point-error, as the values are around the mean. If

Figure 7. Improvement in end-point-error for increasing amount
of detail on Sintel Final (train) [3] for a series of our proposed
models.

this is indeed the case, it makes sense that these artifacts
help for strong cross-dataset generalization where edges do
not align with flow. However, we wonder whether this effect
is actually as desired. These interpolation artifacts around
the mean of two opposite movements, would indicate that
a pixel has (0, 0) displacement. In practise, this is not the
case; pixels on the motion boundary can never actually be
stationary in such case. This can be of large importance to
upstream tasks where the optical flow is used, as it should
be noted what the actual meaning is of the presence of this
bilinear interpolation artifact in the context of optical flow.

Overall, our +DC+FT+TCU(9/7/5) model sets a strong
new baseline on all datasets, except Sintel Final. This is
shown in Table 2. While cross-dataset generalization is an
important aspect of optical flow models, we do not believe
it to be realistic to build a model that generalizes to such im-
pactful motion-blur artifacts that are not at all in the training
data. It is important to note that generalization to KITTI-15
[20] is good, even though it consists of actual real-world im-
ages, taken by a camera. This raises the question whether
Sintel Final is actually a good representation of the real
world, or simply considered to be very difficult due to its,
possibly too strong, blurring effects.

4.3. General Comparison

While the C+T can be seen as a good measure of
cross-dataset generalization, training to a specific dataset
is also considered interesting. Therefore, we integrate
our approach on GMA [15] for the C+T+S+K+H setting.
While theoretically TCU integration is possible in almost
all current-day models, we leave its implementation and im-
pact on performance for future work. We report the overall
performance in Table 3.

5. Discussion
Overall, we observe that our -AUG training scheme de-

creases the amount of the bilinear interpolation artifacts in

Training Data Method
Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)

Clean Final F1-epe F1-all Clean Final F1-all

C+T

HD3 [33] 3.84 8.77 13.17 24.0 - - -
PWC-Net [26] 2.55 3.93 10.35 33.7 - - -
LiteFlowNet2 [11] 2.24 3.78 8.97 25.9 - - -
VCN [32] 2.21 3.68 8.36 25.1 - - -
MaskFlowNet [35] 2.25 3.61 - 23.1 - - -
FlowNet2 [12] 2.02 3.54 10.08 30.0 - - -
DICL-Flow [30] 1.94 3.77 8.70 23.6 - - -

RAFT [28] 1.43 2.71 5.04 17.4
RAFT (recomputed) 1.42 2.69 5.01 17.5 - - -
RAFT+ALL (ours) 1.26 2.74 4.92 17.4 - - -
RAFT+ALL-aug (ours) 1.28 2.93 4.90 17.5 - - -

GMA [15] 1.30 2.74 4.69 17.1 - - -
GMA (recomputed) 1.31 2.75 4.48 16.9 - - -
GMA+ALL (ours) 1.21 2.77 4.47 17.0 - - -
GMA+ALL-aug (ours) 1.18 3.01 4.50 16.6 - - -

C+T+S+K+H

LiteFlowNet2 [11] (1.30) (1.62) (1.47) (4.8) 3.48 4.69 7.74
PWC-Net+ [27] (1.71) (2.34) (1.50) (5.3) 3.45 4.60 7.72
VCN [32] (1.66) (2.24) (1.16) (4.1) 2.81 4.40 6.30
RAFT [28] (0.76) (1.22) (0.63) (1.5) 1.61* 2.86* 5.10

GMA [15] - - - - 1.39* 2.47* 5.15
GMA (recomputed) (0.63) (1.05) (0.58) (1.3) - - -
GMA+ALL (ours) (0.58) (0.97) (0.62) (1.4) 1.45* 2.44* -
GMA+ALL-aug (ours) (0.55) (0.90) (0.58) (1.3) 1.44* 2.47* 5.03

Table 3. General comparison of our proposed models against other works. Here, ALL refers to our ‘+DC+TCU(9/7/5)+FT‘ setting.
Furthermore, C+T refers to training on FlyingChairs [6] and then on FlyingThings3D [19]. Next, C+T+S+K+H refers to training on a mix
of data from FlyingChairs [6], FlyingThings [19], Sintel [3], KITTI-15 [20], and HD1K [16]. The values in parentheses ‘()‘ are calculated
on training data that the model was already trained on. *The warm start strategy is used as described by RAFT [28].

the model output, as can be seen in our submission to the
Sintel public scoreboard. Possibly, completely removing
these artifacts would require longer training without aug-
mentations. However, this will likely cause an overfit to the
training data, which in turn will decrease performance on
the test data. Therefore, we leave a better solution to this
for future work. Most importantly, the presence of bilinear
interpolation artifacts might result in good generalization
when evaluated using the end-point-error, but it is important
to realize its meaning, which in the context of displacement
as is the case with optical flow, is completely wrong. We be-
lieve that ensuring that this interpolation artifact is no longer
present in the flow maps is of great importance with regards
to its meaning and correctness in the context of optical flow,
and can be of great importance for upstream tasks.

To conclude, we find interesting results by reconsidering
the design of the convex upsampler and the bilinear inter-
polation on the flow in the training data. In general, our
methods +TCU, +DC, +FT, and -AUG all seem to achieve a
lower error on the training data, meaning that it has achieved
a better fit. This was our initial goal, and therefore we can
confirm that our changes have the desired effect. However,
generalization is an important aspect of optical flow models.
As such, we ask for careful consideration for adopting our
methods when aligning flow with image edges is no longer
a good thing, as in such case our method may not result in
improvements. However, when aligning flow with object

edges is considered a good thing, we show in the cross-
dataset generalization setting (C+T) that all our proposed
changes can provide improvements.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[2] John Bridle. Training stochastic model recognition algo-
rithms as networks can lead to maximum mutual information
estimation of parameters. Advances in neural information
processing systems, 2, 1989.

[3] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
Michael J Black. A naturalistic open source movie for opti-
cal flow evaluation. In Computer Vision–ECCV 2012: 12th
European Conference on Computer Vision, Florence, Italy,
October 7-13, 2012, Proceedings, Part VI 12, pages 611–
625. Springer, 2012.

[4] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[6] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015.

[7] Ali Hassani and Humphrey Shi. Dilated neighborhood atten-
tion transformer. 2022.

[8] Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and
Humphrey Shi. Neighborhood attention transformer. 2022.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[10] Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang,
Ka Chun Cheung, Hongwei Qin, Jifeng Dai, and Hongsheng
Li. Flowformer: A transformer architecture for optical flow.
arXiv preprint arXiv:2203.16194, 2022.

[11] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. A
lightweight optical flow cnn—revisiting data fidelity and reg-
ularization. IEEE transactions on pattern analysis and ma-
chine intelligence, 43(8):2555–2569, 2020.

[12] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2462–2470, 2017.

[13] Azin Jahedi, Maximilian Luz, Lukas Mehl, Marc Rivinius,
and Andrés Bruhn. High resolution multi-scale raft (robust
vision challenge 2022). arXiv preprint arXiv:2210.16900,
2022.

[14] Azin Jahedi, Lukas Mehl, Marc Rivinius, and Andrés
Bruhn. Multi-scale raft: Combining hierarchical concepts
for learning-based optical flow estimation. In 2022 IEEE In-
ternational Conference on Image Processing (ICIP), pages
1236–1240. IEEE, 2022.

[15] Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li, and
Richard Hartley. Learning to estimate hidden motions with
global motion aggregation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9772–
9781, 2021.

[16] Daniel Kondermann, Rahul Nair, Katrin Honauer, Karsten
Krispin, Jonas Andrulis, Alexander Brock, Burkhard Gusse-
feld, Mohsen Rahimimoghaddam, Sabine Hofmann, Claus
Brenner, et al. The hci benchmark suite: Stereo and flow
ground truth with uncertainties for urban autonomous driv-
ing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 19–28,
2016.

[17] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021.

[18] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[19] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016.

[20] Moritz Menze and Andreas Geiger. Object scene flow for au-
tonomous vehicles. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3061–
3070, 2015.

[21] Anurag Ranjan and Michael J Black. Optical flow estima-
tion using a spatial pyramid network. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4161–4170, 2017.

[22] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee,
and Gary Bradski. Kornia: an open source differentiable
computer vision library for pytorch. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 3674–3683, 2020.

[23] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-
attention with relative position representations. arXiv
preprint arXiv:1803.02155, 2018.

[24] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016.

[25] Xiuchao Sui, Shaohua Li, Xue Geng, Yan Wu, Xinxing Xu,
Yong Liu, Rick Goh, and Hongyuan Zhu. Craft: Cross-
attentional flow transformer for robust optical flow. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17602–17611, 2022.

[26] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8934–8943,
2018.

[27] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Models matter, so does training: An empirical study of cnns
for optical flow estimation. IEEE transactions on pattern
analysis and machine intelligence, 42(6):1408–1423, 2019.

[28] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[30] Jianyuan Wang, Yiran Zhong, Yuchao Dai, Kaihao Zhang,
Pan Ji, and Hongdong Li. Displacement-invariant matching
cost learning for accurate optical flow estimation. Advances
in Neural Information Processing Systems, 33, 2020.

[31] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and
Dacheng Tao. Gmflow: Learning optical flow via global
matching. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8121–
8130, 2022.

[32] Gengshan Yang and Deva Ramanan. Volumetric correspon-
dence networks for optical flow. Advances in neural infor-
mation processing systems, 32, 2019.

[33] Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical
discrete distribution decomposition for match density esti-
mation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6044–6053,
2019.

[34] Feihu Zhang, Oliver J Woodford, Victor Adrian Prisacariu,
and Philip HS Torr. Separable flow: Learning motion cost
volumes for optical flow estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10807–10817, 2021.

[35] Shengyu Zhao, Yilun Sheng, Yue Dong, Eric I Chang, Yan
Xu, et al. Maskflownet: Asymmetric feature matching with
learnable occlusion mask. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6278–6287, 2020.

[36] Shiyu Zhao, Long Zhao, Zhixing Zhang, Enyu Zhou, and
Dimitris Metaxas. Global matching with overlapping at-
tention for optical flow estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17592–17601, 2022.

3 Supplementary Material

3.1 Traditional Optical Flow

Traditional models for optical flow were mostly based on the famous optical flow constraint
Ixu + Iyv + It = 0. Here I are partial derivatives and u and v are the directional x and
y components of the flow vectors. Theoretically, solving the optical flow equation gives
us the optical flow. Unfortunately, the equation only holds when the brightness of a pixel
is consistent over time. In a perfect world, this is the case when the scene is stationary
and the camera moves. Unfortunately in practise, that is not generally the case. Moreover,
camera related image artifacts can also invalidate the optical flow constraint. The reason
for that is that pixel brightness can be influenced by such camera-related artifacts. Another
problem is that there is no reasoning involved when solving the constraint directly. When
a pixel is in image1 but not in image2, as might be the case for occlusions or objects that
move out of the image frame, the optical flow constraint no longer holds. In practise, one
can encounter many problems like non-stationary scenes, lighting changes, camera artifacts,
need for reasoning, and possibly more. Due to these problems, more recent research has
largely focused on approaches that resolve these issues.

3.2 Learning-Based Optical Flow

Due to the aforementioned issues with solving optical flow by solving the optical flow
constraint, other approaches have been widely researched. Inspired by breakthroughs in
computer vision that use learned mathematical models, many optical flow researchers have
looked at similar solutions. The strength of learned models for computer vision in general
comes from the fact that image interpretation can be fully learned. In traditional image
processing approaches, there often exists so called manual feature extraction. That is, to
manually define rules that extract useful information (or ‘features‘) from images, such that
these features can be interpreted by a computer. Unfortunately, manual feature extraction
is a difficult task, often resulting in sub-optimal features. With learning-based computer vi-
sion, this is different. There, an image is taken directly to be the input of a learnable model.
In other words, the image becomes the features directly. This way, it is left to the learnable
model to figure out useful features by itself. Now if unrelated image artifacts from cameras
are considered, this problem solves itself in the learnable setting. By allowing a model to
learn its own features, computer vision models can learn to ignore certain unrelated image
artifacts or lighting changes if ignoring them results in a better overall performance.

While simply using a learned model for feature extraction and still using the optical flow
constraint could theoretically work, it does still have the strong drawback that the model
cannot perform reasoning. Reasoning might be needed for pixels that exist in image1, but
not in image2. In an attempt to provide this ‘reasoning‘ ability to the model, one can define

14

3.3 Datasets

a more general learnable model. In such case, no set of predefined constraints is provided.
Instead, an even more general approach is taken. Rather than solving a fixed optical flow
constraint, learned based models are simply allowed to learn any useful constraints them-
selves. In other words, optical flow is formulated as an end-to-end learnable problem. In
an end-to-end learnable optical flow setting, a learnable model is defined, which has inputs
image1 and image2. An optical flow map f low is the set to be the output. Now, similarly
to humans, these learnable models learn by trial and error. For a given set of inputs a pre-
diction is made for the f low. If it is wrong, the model is slightly corrected, after which the
process is repeated. The set of images that is used for this is called the training data. Since
the model needs to be learned what is correct, the actual correct output for the training data
is needed, such that the model can be corrected if it is wrong. This is called a supervised
learning setting. Unfortunately, this requires that there exists correct f low for all (image1,
image2) pairs. This correct flow is called the ground truth f lowgt.

In many computer vision settings, these ground truth labels are obtained by manually pro-
viding them for a given set of data. However, for optical flow this is very difficult. For
example, if a model would have the objective to learn if an image contains a cat or not,
providing labels for these images would be as easy as labelling them ‘cat‘ or ‘no cat‘. On
the contrary, labels for optical flow f lowgt effectively have per-pixel labels. In essence, every
individual pixel has its own ‘correct answer‘. To train an end-to-end learnable model for
optical flow in a supervised way, every set of input images needs its own f lowgt. This in
turn requires labelling each individual pixel. As this is extremely costly in terms of human
labour, building large-scale datasets of images image1 and image2 with corresponding la-
bels f lowgt remains a challenge. Fortunately, several approaches to this do exist, as will be
described next.

3.3 Datasets

As designing optical flow datasets requires per-pixel labels for the ground truth optical flow
map f lowgt, obtaining large-scale datasets is often difficult. Ideally, one would use real-
world data for image1 and image2. The reason for this is that optical flow models are often
eventually used in practise on real-world images as well. In any learning-based model,
there exists the problem of a generalization gap. That is, if the training data differs a lot
from the data that will be used at a later time in practise, its performance will degrade.
This is because the model will learn to use specific features in the training data to correctly
predict optical flow. If the features when used in practise are different from the training
data, the performance will consequently be worse. Unfortunately, using real-world image1
and image2 is difficult, as taking these pictures is quite simple, but labelling each individual
pixel is infeasible. Alternatively, approaches exist where image1 and image2 are artificially
generated. If the positioning of the objects, and hence the displacement between image1 and
image2 is done according to some random but known mathematical transformation, this
information can be used to directly calculate the per-pixel flow, which can be used as the
ground truth labels. This idea is the main inspiration behind many widely used optical flow
datasets, as will be discussed next.

15

3 Supplementary Material

3.3.1 FlyingChairs

FlyingChairs was proposed by Dosovitskiy et al. [2015], and uses a collection of real-world
images to synthesize an artificial optical flow dataset. As backgrounds, normal real-world
images are used. Then, between image1 and image2 the background is randomly warped.
Due to warping by following a set of defined formulas, the displacement for background
pixels can be calculated, and hence the flow displacement vector is known for every back-
ground pixel. In the foreground, multiple semi-transparent images of ‘flying chairs‘ are
placed. Similarly to the background, the foreground chairs are warped randomly in image2
relative to their spatial position in image1. Again, due to knowing the warp, one can cal-
culate the displacement for each pixel, and use this as the flow value. This way, all pixel
displacement vectors are known, and so these displacement vectors can be used as the labels
for optical flow, without the need for manually annotating any pixels.

3.3.2 FlyingThings3D

FlyingThings3D was proposed by Mayer et al. [2016], and is based on the same idea as
FlyingChairs. However, rather than only using chairs as foreground objects, they expand
their object collection to include a wide variety of other object types as well. Moreover, rather
than using flat 2-dimensional images of objects and warping those as done by FlyingChairs,
the FlyingThings3D dataset uses 3-dimensional object models to not only warp the image,
but actually create different viewpoints of the foreground objects. Logically, this is closer to
the real world, but this also provides more of a challenge for the optical flow model. The
reason for this is that from a slightly different angle, an object could look different. Due to
that, the model has to learn how certain objects look from different angles, rather than just
look for an area in the image that looks similar as would suffice for FlyingChairs.

3.3.3 Sintel

The Sintel dataset Butler et al. [2012] takes a different approach and does not rely on any
real-world images. Instead, the work proposes the use of a rendered world. This is sim-
ilar to current day ‘computer-generated imagery‘ (CGI), as used in animated movies. In
this CGI world, static scenes as well as dynamic scenes with characters in action are ani-
mated. Internally, any CGI movie frame is calculated using a set of underlying equations.
Sintel proposes to exploit this, and use it to calculate flow. For a given pixel in image1, the
corresponding position on the object at that pixel location can be calculated. Then, in the
subsequent frame image2, this object can be looked up, and the same position can be used
to figure out where the pixel is being rendered there. By obtaining the displacement vector
like this, there is again no need for any manual label annotation. For Sintel there exist two
datasets: Sintel Clean and Sintel Final. Of these, Sintel Clean is the simplest variant, as it
does not contain difficult camera-related artifacts. In contrast, Sintel Final is their second
dataset, which consists of the same images but with atmospheric effects, depth of field blur,
and motion blur. These types of effects are often what real-world cameras produce as well.
Due to these artifacts, Sintel Final image pairs provide a larger challenge for optical flow
models.

16

3.3 Datasets

3.3.4 KITTI

Rather than artificial image construction using real-world images like FlyingThings3D or
FlyingChairs, or CGI methods like Sintel, the KITTI Menze and Geiger [2015] dataset takes
a different approach. KITTI uses a set of advanced sensors on a driving car to find correct
flow labels for the surroundings. One of the main difficulties with optical flow in general
is that it only has access to image1 and image2 as inputs. On itself, images have no notion
of explicit depth. KITTI uses stereo view cameras together with a laser scanner to obtain
a lot of information about the scene. They obtain a whole 3-dimensional point cloud, not
just a colored image. By fitting geometrically correct models to moving 3D point clouds,
optical flow maps can be calculated. One of the biggest advantages of the KITTI dataset is
the use of actual real-world image data taken by cameras. Unfortunately, their method does
not predict an optical flow vector for each pixel as the provided optical flow ground truths
f lowgt are sparse. The meaning of sparse is the opposite of dense, in dense there is a label
for every pixel location.

17

3 Supplementary Material

Figure 3.1: Left: continuous data, every X value has a corresponding Y. Right: discrete data,
Y is only defined for specific values of X.

3.4 Prior Knowledge

Dot-Product

The dot-product is the inner-product in Euclidean space. The dot product is an operation
that can be performed on two vectors as following. For a vector v = (v0, v1, ..., vn−1) and
another vector u = (u0, u1, ..., un−1) the dot product is defined as ⟨u, v⟩ = (v0u0 + v1u1 +
... + vn−1un−1). Generally, such a dot product is used as a similarity metric between two
vectors.

Manhattan L1 and Euclidean L2

When calculating distance, there exist different approaches. For example, in Euclidean space

the distance between two points is defined by d(a, b) =
√
(ax − bx)2 + (ay − by)2. The norm

of a vector (the length) in Euclidean space, is referred to as the L2 norm. An alternative
to Euclidean space is the Manhattan space. There, a distance is calculated as d(a, b) =
|ax − bx|+ |ay − by|. In other words, the distance is simply defined by the sum of the absolute
differences between the coordinates. The norm of a vector (the length) in Manhattan space
is called the L1 norm.

Discrete and Continuous

In this thesis both discrete and continuous data are considered. A visual example to illus-
trate the difference is shown in Figure 3.1. To explain the difference, consider the mathe-
matical formula y = sin(x). In this representation, there exists a y value for every possible
real-valued x. Effectively, this allows for mapping infinitely many input values x to a cor-
responding output. In other words, there exists an output value for the whole continuous

18

3.4 Prior Knowledge

input domain. In contrast, discrete representations are not defined everywhere, but only for
specific values of x. An example hereof would be to consider an image of some real-world
phenomena. Our computers generally use a discrete representation to store image data. The
reason for this is that individual pixels are used, which gives the image a corresponding
resolution. Now consider that for a discrete image representation of pixels, one would want
to know the value (or color) of a pixel. This is well defined, and is as simple as using the dis-
crete representation to lookup the value that corresponds to the pixel coordinate. However,
things get difficult when a value is needed at a location that is not exactly on a pixel coordi-
nate. While all sorts of interpolation or guessing techniques can be used to reason what the
most likely value is, it is simply not explicitly defined in the discrete representation. But, if
pixel values are considered to be a collection of real-world measurements, simply doing an
extra observation on the real world for this specific location would provide the actual correct
value. Here, the spatial position in the real world is a continuous spectrum, while an image
is simply a discrete representation thereof.

Data Distributions

Data can be seen as a collection of measurements of some real-world phenomenon. For
example, consider a small collection of images of cats U. Each of these images provides
a view of some real-world phenomenon that contains a cat. Now consider how many of
such possible cat images could exist. In essence, their could exist infinitely many cat images
(assuming some continuous image representation is used), each time with a small change
somewhere in the image compared to another cat image. This collection of all possible cat
images would be called the distribution of all cat images D. Effectively, the small collection
of cat images U, comes from the data distribution D. This is important for learning-based
models, as one usually only has access to U. However, unseen data that will be processed
by the model when it is used in practise, will come from D, and not necessarily from U.
Therefore, it is important to consider that the objective is generally to fit a learning-based
model to some distribution D, not to some collection of data U. However, describing D
exactly is difficult, and hence learning is often done on U instead, but it is important to
know the difference.

Linear or Convex Combination

To calculate a linear combination of a sequence of elements each element is given a weight
after which everything is summed. An example hereof can be given for a sequence of inputs
as (x0, x1, x2). Then, the linear combination is given as w0x0 + w1x1 + w2x2. Note that
this definition is not solely limited to scalar values, as is the case when (x0, x1, x2) are just
numbers. If (x0, x1, x2) are vectors, the same operation can be applied, as vectors allow for
both summing and multiplication. In general, a linear combination can be taken of any
sequence of elements as long as the elements can be multiplied with a scalar weight, as
well as be summed. A specific version of a linear combination is a convex combination. In
essence, a convex combination is highly similar to a linear combination, but adds an extra
restriction to the weights (w0, w1, ..., wn−1). This restriction is namely that the weights must
be positive and sum to 1. In other words, the weights must form a discrete probability
distribution. Here, discrete refers to it being a series of values, rather than be a smooth
line for a continuous input domain, and a probability distribution requires all values to
be positive and sum to 1. While the difference between a linear and convex combination

19

3 Supplementary Material

might not seem that important, it should be noted that convex combinations are a lot more
restrictive. If no negative weights can be used and the weights have to sum to 1, note that
no weights larger than 1 can exist. Effectively, the complexity of the linear combinations that
can be made is strongly reduced. This is important, because in learning-based models using
a less complex function can actually be advantageous. For example, if it is known that the
optimal solution is likely to be a convex combination rather than a linear one, setting this
restriction can help to reduce the search space, which could make it easier for the model to
converge to a solution faster. The search space is the continuous space of all learnable model
parameters.

3.5 Deep Learning

3.5.1 Learning-based Models

In general, the so called ‘learning-based models‘ refer to all mathematical models that map
a series of inputs to a series of outputs, using a learnable set of parameters. Effectively,
a function as simple as y = ax where a is a learnable parameter, x the input, and y the
output, could already be seen as a learnable model. However, it is not really a ‘powerful‘
model. Here, powerful expresses the complexity of the function that can be learned. In
many learning problems, such a simple function does not suffice as the underlying patterns
in the data are a more complex than what can be captured by the function.

A popular approach to learning-based models is deep learning. In deep learning, the general
idea is to stack together many smaller learnable models. The main choice for these smaller
models is often a relatively simple linear model. However, stacking together many linear
models, still makes the final model simply a linear mapping as well. In an attempt to resolve
this, deep learning uses non-linear activation functions after most linear layers. This section
will describe the high-level idea of deep learning, their common building blocks, and why
deep learning is considered a powerful learnable model for many current day problems.

3.5.2 Objective

In deep learning, there usually are no manually set constraints or pre-defined heuristics.
Instead, all underlying logic is left to be figured out by a learnable model. This on itself is
quite a powerful idea, as deep learning models can learn to make predictions from data that
might not be completely understood by humans. An example of this is optical flow. There,
humans are able to manually annotate flow, yet are unable to provide a fixed set of equations
to be solved that solves optical flow from images in a general case. When a deep learning
model is created, the learnable parameters are randomly initialized. At that point, they
likely do not capture any useful patterns in the data. Then, the model is trained. Training
a deep learning model is based on the idea of learning by trial and error. To calculate what
the error is for a given output, a so called loss function is defined. This loss function can be
used to back-propagate the gradient, which in turn can be used by an optimizer to update
the learnable model parameters.

20

3.5 Deep Learning

Supervised, Unsupervised, and Self-Supervised

In general most deep neural networks are trained by trial and error. However, there exist
many differences in how the error is calculated. Perhaps the simplest case is a supervised
setting. In a supervised setting, a dataset is created where each sample has corresponding
labels, the ground truths. To calculate the error, the predicted value is compared against
the ground truth using the loss function. However, deep learning models generally need
thousands of images at minimum for training, preferably even a lot more. Labelling all
these images can quickly become costly, especially when labelling the data is a difficult task.
Therefore, alternative approaches like unsupervised learning are also widely researched.
In unsupervised learning, a large collection of training data is provided, but without any
labels or ground truths. In such case, one has to define a loss function that does not require
a ground truth. The important question that remains is how one can define an ‘error‘ if the
correct answer is unknown. A popular variant of unsupervised learning is self-supervised
learning. The idea with self-supervised learning is that the labels are extracted from the
data in an automated way. For example, if a learned model has the objective to colorize an
image based on a gray-scale image, such a dataset could easily be built by simply taking
many colored pictures and convert them to gray-scale. In such a case, a model could have
the learning objective to reverse this operation: make colored pictures from grayscale, where
all ground truth labels are known.

Several similar ideas exist, of which an interesting one is auto-encoders. The idea of an
auto-encoder is to define a learnable model that has the objective to output the input, as
f (x) = x. So, ideally, for a given input image, the predicted output image is the same.
Now, in the design of the learnable model, one can ensure that there exists a so called
bottleneck, which is a layer that has a significantly smaller representation than the size of
the input image. If with this bottleneck the network is able to the predict the output from
the input, this bottleneck representation must be a smaller encoded representation of the
image. Effectively, without providing any explicit encoding techniques, such a network can
learn to compress data into a smaller representation. The part of such a model before the
bottleneck layer is called the encoder, while the part after the bottleneck is called the decoder.
In video compression such an approach can be used where one system encodes the video
using the encoder, sends the compressed data over the internet, and the receiving party uses
the decoder (which was sent to it in advance) to reconstruct the video again.

Loss Function

Now consider the supervised case, as this is what is used by the optical flow models that
are discussed in this thesis. When an input sample is processed by an untrained model, the
output is calculated using the random initial learnable parameters, which does likely not
result in the correct output. To correct the model, the error needs to be provided, or in other
words, how much the model was wrong. To obtain the error, the correct output is required;
the ground truth. Fortunately, this is available for the supervised learning setting.

To calculate the error, many approaches exist. For a given model prediction ŷ and a ground
truth value y, the L1 error would be defined as errorL1 = |ŷ − y|. Note that this prediction
is not necessarily a single scalar value, and may be a vector of multiple scalar values, each
corresponding to an output of the deep learning model. In optical flow, each pixel would
have its own ŷ with corresponding y. However, to calculate the error, a single scalar value is
needed. An easy way to do this is to use the mean of the individual errors. While L1 error

21

3 Supplementary Material

is often used, L2 can be used in a similar way and is defined as errorL2 = (ŷ − y)2. When
taking the mean of these errors, this is called the mean squared error, or MSE for short. In
general, the error function is often referred to as the ‘loss function‘. The idea behind this is
that the outcome of that function is to be minimized.

Choosing the right loss function might not always be trivial, as each loss function tends to
have certain specific properties. For example, L2 loss squares the error, which gives high
penalty for model predictions that make very wrong predictions. While this might sound
good in theory, practise often shows that datasets are not perfect. For example, datasets can
have wrong labels by accident, or have labels that are correct, but cannot be learned from
the data. In such case, if one were to give high error to these samples, unwanted extreme
parameter updates follow, which could hinder model training. Another example of this is
when there exist outliers in the data. An outlier is a sample in a dataset that is very different
from the rest of the data. If it is desired to force the model to learn the correct predictions
for these samples, L2 loss would likely be the best choice, as it strongly penalizes large error.
In contrast, L1 does not give this high penalty for very wrong samples, as it simply does not
use the square of the error. This makes L1 a more suitable loss function if it is known that
the data contains wrong samples or outliers which ideally should be ignored. In such case,
L1 loss could train the model more easily. Overall, many more loss functions exists, some
of which are for instance hybrid variants of L1 and L2 loss that tend to take benefit of both
approaches. In general, there is no single best loss function.

For optical flow models, L1 loss is generally adopted. A reason for this is when an object in
image1 moves outside of the image, and is therefore not in image2. In such case, as many
datasets are artificially generated, the computation that calculated the flows during dataset
construction did know where it moved the object, and thus provides labels for these pixels
in the ground truth flow map. However, it would be impossible to tell exactly where an
object moved in such case, given solely image1 and image2. This is what was referred to as
samples that have correct labels, but simply cannot be learned from the data.

Evaluation

To evaluate how good a trained model is, an evaluation metric can be used. On itself, the loss
function can already be used for this. However, the loss function is defined such that it can
be minimized by the model. Most importantly, it must be differentiable. But, it is not always
the case that the loss function gives a good human-interpretable impression of how well the
model performs. For example, an evaluation metric could simply be the accuracy; so how
many of the samples it predicted correctly. However, accuracy on itself is not defined by a
continuously differentiable function, as it simply counts the amount of correct samples. In
such case, accuracy can be calculated to give an easy human-interpretable evaluation metric,
but it cannot be used by the model to train. A similar case with a different reason for an
alternative evaluation function exists for optical flow, as is discussed next.

In general, optical flow models are evaluated using the average end-point-error (EPE) metric.
This metric is calculated as the average of the errors of all individual pixels. That is, for
every pixel in image1, a flow vector f̂ is predicted, which is compared against the correct
flow vector f as error = dist(f̂ − f) where dist refers to the distance in Euclidean space, or
in other words, the L2 norm. The final model is then evaluated by taking the mean of the
errors for all pixels from all images. Interestingly, this L2 loss is actually nicely differentiable,
but many optical flow models minimize L1 loss instead. The reason for this is with regards

22

3.5 Deep Learning

to impossible samples. Remember that the L2 loss strongly penalizes very wrong samples.
A problem with optical flow is that in artificially labelled datasets, objects can move behind
something else, or move out of the image frame completely. In such case, it is impossible
to predict the correct flow vectors given solely image1 and image2. Using the L2 loss, these
impossible examples get high errors, which causes large updates to the model parameters
which in turn hinders model convergence. Instead, L1 loss does not use extra high penalty
for very wrong samples, which helps the model converge by essentially partly ignoring
these impossible samples. Interestingly, when minimizing the L1 loss, the eventual end-
point-error, which is calculated using the L2 norm, is generally lower than when minimizing
the L2 loss directly, due to more stable convergence.

Gradient Descent

For a given set of inputs the output ŷ can now be obtained, from which together with y and
a loss function, the loss value can be calculated. Next, the objective is to minimize this loss
value. A way of doing this is using gradient descent. In gradient descent, the main idea is
that for every parameter one can describe its influence on the loss value. Mathematically,
this is referred to as the gradient ∂L

∂p for loss function L with respect to parameter p. This
gradient of to the loss function with respect to parameter p indicates how a change in the
parameter p influences the loss. To minimize the loss, p needs to be updated such that it
decreases the loss value, which can be done using the gradient. Namely, the parameter p
can be updated by taking a step in the opposite direction of the gradient, or simply take a
step in the direction of the negative gradient. If the positive gradient is used to update p,
the loss function will increase, which is not as desired. Note that the negative gradient is
just a direction; it points in what direction to move a parameter to minimize the loss. To use
this to update p, this can be done using gradient descent as p′ = (p − α(∂L(x;y;θ)

∂p)), where p′

is the updated parameter value, p the original parameter value, and α the learning rate, or
the step size. The learning rate is effectively how far the parameter moves in the direction of
the negative gradient. Moreover, ∂L(x;y;θ)

∂p is the gradient of the loss function L with respect
to the parameter p that was calculated on input x, ground truth y, and parameters θ. Note
that p is part of θ.

On a high level, gradient descent can be seen as walking over a hilly landscape and simply
always following the direction of steepest descent. Note that this approach does not guar-
antee that the globally lowest point is reached. For example, consider the parameter space
as given in Figure 3.2. Here, for some starting values of p, it is likely that gradient descent
converges to the local minimum, not the global minimum. However, this plot is given for a
single parameter p. Note that some models can have millions of parameters. For number of
parameters np this plot would become a (np + 1) dimensional plot, so the loss landscape is
very complex and cannot be visualized as done here for a single parameter. In general, sev-
eral techniques exist to avoid local minima, one of which is simply choosing an appropriate
learning rate. Further techniques are discussed in the Section 3.5.2.

Backpropagation

For gradient descent, the gradient of the loss function L with respect to a parameter p is
needed: ∂L

∂p . However, obtaining this for deep complex mathematical models might not

23

3 Supplementary Material

Figure 3.2: Loss landscape for a given parameter p with corresponding loss value L.

always be trivial. Fortunately, there exists a systematic and efficient approach that can be
used on any learnable model to obtain the gradient of the loss with respect to any parameter
p, as long as each individual component of the learnable model is differentiable, as well as
the loss function. Note that individual network components are also called layers. This
approach is called backpropagation.

At the output of a learnable model, the gradient of the loss L can be calculated with respect
to the outputs of the network; ∂L

∂y . Now consider that a deep neural network consists of
many individual layers. Each layer has an input x and an output y. The output of the
last layer y was predicted as the network output. The chain rule can be used to obtain the
gradient of the loss with respect to the input of the last layer x, rather than with respect
to the output y. This can be done as ∂L

∂x = ∂L
∂y

∂y
∂x . Fortunately, ∂L

∂y is known as this was

calculated using the network output and the loss function. Next, ∂y
∂x differs for each type of

layer but can be calculated as long as the layer is differentiable. So, the important thing here
is that if the gradient of the loss with respect to the output of a layer ∂L

∂y is known, it can be

used to calculate the gradient of the loss with respect to the input of the layer ∂L
∂x . Now an

important observation for backpropagation can be made. That is, the input of a given layer
was the output of the previous layer. Effectively, using this chain-rule trick each layer’s ∂L

∂y

can be used to obtain ∂L
∂x , which is in fact ∂L

∂y of the previous layer. This way, the gradient can
‘propagate‘ all the way back trough a network no matter how deep the network is, as long
as all layers are differentiable.

Now that at each layer the gradient of the loss with respect to the output ∂L
∂y is known, the

chain rule can be used again to obtain the gradient of the loss with respect to any learnable
parameters. This is of great interest, as this allows for the use of gradient descent to update
the parameters. For gradient descent ∂L

∂p is needed, where p is a learnable parameter. Using

the chain rule it can be obtained that ∂L
∂p = ∂L

∂y
∂y
∂p . Here, ∂L

∂y is the gradient of the loss with
respect to the output of the layer, and is known by propagating the gradient backwards
through all layers. Then, ∂y

∂p is the gradient of the output with respect to the given parameter

24

3.5 Deep Learning

that is to be updated. Fortunately, this can be calculated if the layer is differentiable, as it is
known how y was computed from input x using parameter p.

In essence, backpropagation can be seen as using the chain rule to rewrite the gradient of
the loss with respect to the output, to the gradient of the loss with respect to the input,
combined with the observation that each layers input was the output of its previous layer.
Within each layer, this gradient of the loss with respect to the output of that layer can be used
to calculate the gradient of the loss with respect to any given parameter p within that layer.
Using this ‘local‘ gradient, gradient descent can be used to update the parameter values.

Optimizers

While gradient descent with back propagation is theoretically possible, it is not often used in
practise on complex models like deep neural networks. This is mostly due to optimization
problems. The first problem with gradient descent is that in order to calculate the loss, all
the data samples from the dataset are used. For large datasets and complex models, this
becomes an incredibly costly operation. An alternative to this is stochastic gradient descent.
There, for each step a subset of the whole dataset of samples is used to update the model
parameters. Due to not using all samples via random sub-selection, the gradient becomes
more a bit more noisy, or random, and hence the name stochastic. Stochastic gradient
descent is currently widely used in optimizing deep learning models, but often not in its
original form. The reason for this is slow convergence.

Now reconsider the analogy of gradient descent being visualized as a ball rolling down
the slope of a hill. In real world, the ball will reach a lowest point rather quickly, due to
acceleration. However, the phenomenon of acceleration is not part of the original stochastic
gradient descent. There, the direction of the rolling ball is recalculated each time, and a
step is taken in that direction. In other words, multiple steps in the same direction do not
cause the next steps in the same direction to be larger. In stochastic gradient descent, this
idea can also be implemented. There, it is called momentum, which is mainly for providing
the effect of acceleration, which in turn speeds up convergence. Moreover, it has two other
important properties. First, it can solve an important problem of stochastic gradient descent.
The problem with stochastic gradient descent compared to normal gradient descent is that
by only using a small subset of the data each time, the gradient can become noisy. By using
momentum, a single gradient that is wrong and points in a completely different direction,
only slightly changes the actual direction of the rolling ball. This avoids the optimization
from directly taking a step in the wrong direction when the gradient is wrong only once in
a while. The second important effect of momentum is avoiding local minima. Reconsider
the ball rolling of the slope of a hill. If there is slight increase at some point, a ball without
acceleration would immediately get stuck (assuming a small learning rate). On the contrary,
a ball with acceleration might have enough momentum to move over the small increase, and
thereafter continue to roll further down the slope. In terms of optimization, this makes an
important difference, as getting stuck in local minima is not desired, but finding the global
minimum is.

Many more types of optimizers exists, but for deep learning models these are almost always
based on the principle of stochastic gradient descent (SGD) with momentum. An example
of such an alternative optimizer is the widely used Adam optimizer Kingma and Ba [2014].
While SGD uses a fixed learning rate, or step size, for all parameters, Adam is a so called
adaptive optimization algorithm. For each of the individual parameters, the second and

25

3 Supplementary Material

first order moments of the gradients are used to provide momentum and to scale the update
step. As a result, Adam generally converges a lot faster. However, please note that there is
no single best optimizer. Each problem and model can have its own properties, and finding
an optimal optimizer for a problem usually requires a trial and error approach.

Train/Validation/Test Split

In case of evaluating any trained learnable model, one has to consider what the model is
evaluated on. For example, if a dataset contains 1,000 samples and all of these samples are
used for training, it becomes difficult to evaluate the model. Reason for this is that when
using the same data again, this does not indicate how well the model performs on unseen
data, which is the eventual goal. Therefore, a part of the dataset is usually set aside, which
is called the validation data. The model should never be able to see any validation data
during training. So, the training data is used for training, and the validation data can be
used to evaluate the model performance on unseen data. This practise is widely known and
generally used. This approach can be taken one step further. The reason for this is that
sometimes multiple models are being trained on the training data, and the validation data
is used to compare which model performs best on unseen data. However, when multiple
models are used and a single best model is chosen, this is not necessarily the best model
in general. After all, this model was chosen because it performed best on the specific data
of the validation set, not because it performed best on any unseen data in general. All one
could conclude from this is that that specific model performed best to the unseen data of
the validation dataset, not to any unseen data in general. So, to have a measure of real-
world performance, using the validation data will not suffice. For that reason, sometimes
the validation set is split again and a test set is kept apart as well. In such case, training data
is still used for training, and validation data is used to compare different models against
each other. Then, a final model is chosen based on the performance on the validation data,
after which this model is evaluated on the test data for a measure of real-world performance.
For the test data, it is important to only evaluate on it once as the very last test. Going back
and tuning based on test data performance may never be done.

3.5.3 Deep Neural Network Layers

Linear Model

The idea behind a learnable model is to consider the model as a large flexible mathematical
function. This learnable function learns to map one or more inputs, to one or more outputs.
If n is denoted as the amount of inputs, and m as the amount of outputs, such a function
can be written as f (x0, x1, ..., xn−1) ⇒ (y0, y1, ...ym−1).

First, consider the scenario where a single input is mapped to a single output, and let the
input format be a vector of shape v = {v0, v1, ..., vn−1}. Then, to turn this into an output
value, a possible way to do this is to take a linear combination of the input values. That
is, weigh each element by a corresponding weight and sum that. This linear combination
can be written as l0 = (w0v0 + w1v1 + ... + wn−1vn−1) where the values from w are scalar
values. Note that this is the definition of the dot product ⟨w, v⟩. However, this dot product
only outputs a single value, where it could be desired to map the values from the input
to multiple output values. This can be done by simply taking k linear combinations, each

26

3.5 Deep Learning

time with different weights w. This way, the size of the output can be chosen freely by
setting k. This type of linear combination is the building block of most machine learning
models, as they form the simplest operation to map a series of input scalars to a chosen
number of output scalars. Note that this operation of taking many dot products for each
w can efficiently be implemented using a matrix multiplication of form y = xW. However,
a standard linear combination always goes through the origin of the coordinate system. To
give a bit more complexity to the model a bias term can be added, which makes the formula
y = xW + b.

Non-Linear Activation

While on itself a linear function can map any size input to any size output, it should be
noted that the transformation is linear. Due to that, it is not able to solving any problems
that require a non-linear mapping function. A possible way to make simple linear models
non-linear, and thus make them able to model more complex functions, is to apply a non-
linear activation function. An activation function is a function that is applied to the output
of another function, for example a linear model. An example of an activation function is
the ReLU which is defined as y = max(0, x). where x is the input and y is the output,
where max is the element-wise function that takes the highest value. In essence, the ReLU
function simply sets all values below 0 to 0. Note that the activation function itself has no
learnable parameters. The main idea of this approach is that by stacking many linear layers,
the resulting model is still linear. Adding these non-linear activation functions between
these linear layers allows the model to learn non-linear functions. This is nice because it
keeps the building blocks nicely simple and linear, yet makes the overall network a complex
function.

Another example of a non-linear activation function is the sigmoid function. The sigmoid
function takes unbounded inputs and maps it to range (0, 1). Similarly, tanh can be used as
an activation function as well, but maps to the range (−1,+1) instead. Note that for ReLU,
the range of the output was [0, ∞). Three common activation functions are shown in Figure
3.3. Note that each activation function can have different properties, which can make them
ideal for different types of problems.

Neural Networks

With the linear model and non-linear activation functions described, a simple neural network
can now be constructed. A simple neural network could simply consist of many stacked
linear layers, each with a non-linear activation function applied to their output. Importantly,
the universal approximation theorem states that for a sufficiently complex neural network
it holds that it can learn to model any mathematical function. This makes neural networks
a universal approximator. Note that this theorem only holds when non-linear activation
functions are used. This theorem is one of the main reasons why neural networks are so
widely adopted for a large range of tasks.

27

3 Supplementary Material

Figure 3.3: The ReLU, sigmoid and tanh functions plotted for the input domain (−4,+4).

3.5.4 Vanishing Gradients and Normalization

A difficulty with neural networks is their optimization. That is, to find which parameters
work best for a given problem. While optimization approaches on their own are important
factors on the final performance, it should be noted that the design of the learnable model
is also of great importance. In back propagation, the gradient of the loss function with
respect to each parameter is calculated. So, this information is propagated backwards all the
way from the output back to each parameter. This includes backward passes through the
activation functions. This can lead to two well-known problems; vanishing gradients and
exploding gradients.

Consider the tanh activation function from Figure 3.3, and consider an input for this activa-
tion function to be x = 4. The resulting output value is then close to 1, as can be seen in
the graph. However, possibly this value was wrong, and should instead have been −1. In
such case, ideally the gradient would indicate that the value of x = 4 has to be decreased
such that the resulting output gets closer to −1. This is what the gradient is used for in
gradient descent. However, there is a problem here, as can be seen in the Figure 3.4 which
contains a plot of the gradients of the activation functions. The problem is that the gradient
is close to 0 for the input value x = 4. So, while ideally the gradient would have provided
our optimization with the knowledge that x has to be decreased to get the output towards
−1, the gradient now provides no useful information. In neural networks, many layers are
often stacked, many of which are non-linear activation functions. If several of these acti-
vation functions provide gradient 0 in their backward pass, multiplying all these gradients
together as done by backpropagation will result in a gradient near 0 when it reaches the
parameter that is to be updated. As can be seen in Figure 3.3, all activation functions have
areas where the gradient is near 0. The other problem, exploding gradients, works in a sim-
ilar way but happens when large gradients are multiplied together, and hence the gradient
has ‘exploded‘ to an unusable high value once it reaches the parameter that needs to be
updated.

In an attempt to solve both problems, multiple normalization approaches have been widely
adopted, such as BatchNormalization Ioffe and Szegedy [2015], LayerNormalization Ba et al.

28

3.5 Deep Learning

Figure 3.4: The ReLU, sigmoid and tanh gradients plotted for the input domain (−4,+4).

[2016], InstanceNormalization Ulyanov et al. [2016], or GroupNormalization Wu and He
[2018]. While each of these approaches normalizes in a slightly different way, the general
idea is that the activation values are kept around 0 on average. For example, by subtracting
the mean and dividing by the standard deviation, the average of the input is positioned at
0 and the input has unit variance. This would generally provide useful gradients as can
be seen in the gradient plot Figure 3.4. So, using normalization approaches, vanishing as
well as exploding gradients are less likely to occur. Moreover, the choice of the activation
function might also help with this, as the gradient of ReLU is either 0 or 1. That means,
that as long as the activation is positive, the gradient is 1 and hence the magnitude of the
gradient stays unchanged when multiplied together.

3.5.5 Skip Connections

In an alternative approach to solve the vanishing gradient problem, skip connections, or
residual blocks He et al. [2016] were proposed. The main idea behind these type of connec-
tions is that rather than having each layer feed into the next layer in a sequential manner,
the connection also is able to pass around a layer. A way of doing this is to make the indi-
vidual network components predict the residual instead. That is, to see each layer output
as an update to the input, rather than treat an output as a the new output value directly.
Mathematically seen a normal layer could be written as y = f (x) where f (x) is the layer
with x as input and y as output. For residual connections, this would become y = x + f (x).
By doing this, the output value y is computed from two terms, both x and f (x). If the
gradient in the backward pass through f (x) vanishes, the x term could still provide a use-
ful gradient. Effectively, f (x) computes the residual that together with the input forms the
output value, so f (x) no longer becomes the output value directly. Note that different tech-
niques are not exclusive, so residual blocks may also employ normalization techniques such
as BatchNormalization Ioffe and Szegedy [2015].

29

3 Supplementary Material

Figure 3.5: Data from a sin function with random noise, where different order polynomials
are fitted to the data. Note that for degree 1 and 2 a clear underfit is occurring, for degree
8 a decent fit seems to occur, and for degree 256 a clear overfit is visible.

3.5.6 Regularization

A simple linear model when combined with non-linear activation functions, can be used
to build a neural network. Given that it is sufficiently complex, this neural network is a
universal function approximator. However, it is important to note that the complexity of a
neural network is an important factor for its performance. When a neural network is not
complex enough, the problem of underfitting can occur. Underfitting means that the data is
not sufficiently captured by the model, and hence during training the performance cannot
increase any further. A visual example is provided in Figure 3.5. There, discrete data points
are plotted from a sinus function with added random Gaussian noise. To fit a mathematical
formula to this line, a c-degree polynomial function is used. So, c = 1 refers to a simple
line. As can be seen in Figure 3.5, this line (blue) does not fit to the data well, no matter
where and how it is placed. This is referred to as underfitting. Considering the second
degree polynomial (orange), the function is still underfitting to the data. In both cases, the
function simply cannot represent a pattern that is complex enough to learn a good fit to the
data points. For c = 8, the data seems to be captured well. However, if the complexity is
further increased to for example c = 256, a classical example of overfitting is visible. Surely,
this function of c = 256 has better performance than c = 8 when evaluated on the gray
data points. However, c = 256 likely performs worse than c = 8 when evaluated on unseen
data. Here, unseen data refers to other points coming from the same sinus with Gaussian
noise distribution where the gray points were also sampled from. In practise, all that usually
matters is how well a model performs to unseen data, as training data performance is no
longer relevant after training, so overfitted functions should generally be avoided.

So, overfitting is the problem where a neural network learns the data too well. During
training, a seemingly perfect prediction is given for a large portion of the data. However,
when new data is provided to the model, the performance is a lot worse. An example
of overfitting is when a model simply learns to remember all the exact data points that it
sees during training. In such a case it does not recognize any general patterns. Logically,

30

3.5 Deep Learning

a sample a test-time is something unseen, and an overfitted model will perform worse in
such case. Both underfitting and overfitting are problems that one generally wants to avoid.
However, this can be difficult for neural networks, as given enough complexity they become
universal function approximators. However, there is not a single simple constant that can be
tweaked to change the complexity, as was the case with the c-degree polynomial. In general,
it is difficult to quantify the complexity of a neural network. However, it is still highly
desired to avoid the overfitting and underfitting phenomena. In an attempt to do so, many
techniques have been proposed. Usually, this is simply based on trial and error. As such, if
the model is underfitting one of two things is usually done. Either the model is made more
complex by adding more layers, which makes the network ‘deeper‘, or the representation
size of certain layers is increased, which makes the network ‘wider‘.

Avoiding overfitting is the other general goal in the design of any learnable model. One of
the simplest techniques to avoid overfitting is called early stopping. Early stopping means
that the performance of the validation data is monitored while training. If the performance
on the validation-data starts to decrease while the performance on the training data is still
increasing, an overfit is happening. Simply stopping training upon this phenomena is a
possible way to ensure the model does not overfit any further. This idea is based on the
assumption that easier more general solutions are found first, while models only learn to
overfit to specific unrelated patterns at a later stage. Another approach would be to make
the network less complex, so to reduce the number of learnable parameters by making the
network less deep or less wide. Retraining while monitoring the performance on both the
training data and validation data is usually the only way to tell whether an overfit or underfit
is occurring.

Another way to avoid overfitting is through regularization. Regularization is a technique
that encourages the network to find the easier solutions first, and only use difficult solutions
when they strongly benefit the performance of the model. One such approach is L1 or L2
regularization. Here, a penalty is added that penalizes parameters with high magnitude. So,
the model is encouraged to find solutions where the weight values, or model parameters,
are small. The general idea here is that small overall weights find general patterns, and
that weights that have much larger values than others find highly specific patterns. So, by
penalizing large weights, solutions are less likely to focus on highly specific patterns in the
input data. This forces the network to find more general patterns using generally smaller
weights, which in turn decreases the chance of overfitting. Note that the network is still able
to use large weights, but that doing so will only occur when it provides great benefit to the
overall performance. Setting the strength of this regularization constant (or, how strong the
penalty is) is usually again done by trial and error. However, similar to setting the degree
of the polynomial function, regularization usually allows for tweaking a single constant that
describes the model complexity.

Most optimizers like SGD have an easily usable built-in way of enabling this type of reg-
ularization called ‘weight decay‘. For the popular optimizer Adam Kingma and Ba [2014],
a fixed ‘weight decay‘ variant AdamW Loshchilov and Hutter [2017] is commonly used, as
the original formulas were found to be incorrect with regards to the use of weight decay.

3.5.7 Weight Initialization

Parameters, or often referred to as weights, are the trainable components of learnable layers.
However, when a model is created these parameters have to be given some initial value.

31

3 Supplementary Material

While it might not seem important, the initialization of these parameters has large influence
on many factors. Some of which are vanishing gradients, exploding gradients, or other con-
vergence issues. For example, consider that the weights are initialized to very large values.
Then, the gradients will become large too, which in turn can cause exploding gradients in
the backward pass. On the contrary, consider that the weights are initialized such that all
activation functions have activations in areas with saturated gradient, with gradient val-
ues near 0. In such case, the network will never converge, as parameters are not updated.
Overall, many different works have investigated different weight initialization techniques.
Some weight initialization techniques even consider the type of used non-linear activation
functions, and adapt their initialization based on that. In general, some form of random
initialization is used. Examples hereof are Gaussian/uniform initialization, Xavier initial-
ization, and He initialization, but many others exist. Each of these initialization approaches
has different design reasons and can be useful in different scenarios. Like many other things
in deep learning, finding a weight initialization scheme that works can sometimes require a
bit of trial and error.

3.5.8 Convolutions

Regularization can be done in many different ways, another one of which is parameter
sharing. This can be especially helpful with images. If an H ×W image with 3 RGB channels
is used as the input to a neural network, a possible way of doing this is to just consider
every pixel and every color channel as a separate feature. Unfortunately, this scales badly
as the amount of input features would be H × W × 3. For a 256 × 256 image, this results
into 196, 608 input features. When used as the input to a simple linear layer with equally
sized output, the number of parameters without bias would be 38, 654, 705, 664 where the
problem regarding complexity and feasibility quickly becomes apparent. Such an approach
is generally referred to as a fully-connected approach, where every input feature can have
influence on every output feature. Reason for this complexity is that processing an image
this way does not consider any so called ‘spatial inductive bias‘. That is, the model has
to learn all possible different spatial orientations, for example for translations and different
scales. To clarify this further, consider that humans would generally recognize something
when they have learned it, unrelated to the spatial positioning of the object in their field of
view. This is what is meant by translation invariance. Ideally, this same property would be
made part of neural networks as well. Note that this is not yet the case in a fully-connected
approach. If an object is at the left top of the image, it is processed by a completely different
set of parameters then when it is placed at the right bottom of the image.

A possible way to effectively ‘hard-code‘ this spatial inductive bias into neural networks
is using convolutions. The idea of a convolution is that one slides a window over an in-
put image and treats the values in a window at each position as an individual set of input
features. Then, all these sets of features, which are considerably smaller than before due
to the window size being many times smaller than the whole image, are processed using
a linear layer. The window at every spatial position shares the same linear layer with the
same parameters. This is an important component for introducing ‘translation invariance‘
into neural networks for images. So, the same parameters are used to detect certain local
patterns, irrelevant of the location of this pattern within an image. One of the important
effects of this is that it strongly reduces the required number of parameters, from several bil-
lions to several thousands in most cases. This is important, as having too many parameters
makes the network vulnerable to overfitting. Taking this ‘parameter sharing‘ approach in

32

3.5 Deep Learning

Figure 3.6: General design of a recurrent neural network, where a state is updated sequen-
tially based on the next element in some input sequence. At the end, an encoded single
fixed-size vector representation of the input sequence is obtained.

the form of convolutions can help to avoid this, effectively making the use of convolutions a
regularization technique. Another thing to consider is the nice computational advantages of
such an approach, as effectively every window position can be computed in parallel, mak-
ing current-day GPU-based convolution implementations fast and efficient for processing
images.

3.5.9 Recurrent Neural Networks

A widely known problem for many mathematical models is their fixed input format. For
images, this is often avoided by resizing the input image to a fixed size. Something to
consider is how one would do this when the input is not always the same size, for example
with a sentence consisting of words. A sentence can be a couple words long, but also be a lot
longer. If a fixed input format has to be defined, this becomes difficult. If the input sentence
is shorter than the predefined size, the additional positions can simply be left empty, but
this is computationally inefficient. On the other hand, if the input sentence is longer than
the predefined size, part of the sentence will simply not fit in the input, and has to be left
out, which can lose important parts of the full input sentence. Simply said, both approaches
are not ideal.

In an attempt to resolve this problem, a neural network with variable-size input was pro-
posed. The idea here is that the network handles a single input at the time. By repeatedly
taking in a single element, this step can be repeated as often as there are inputs. This makes
its use for sentences great, as input elements can be added one-by-one until the end of the
sentence is reached. The trainable parameters for this model are the same for every step, and
hence the number of parameters is not dependent on the input length. Most importantly,
it is possible to add as many inputs as needed. The name of such a network is called a
recurrent neural network. The main design for it is that such a model takes two inputs; the
‘new input‘ and the ‘previous state‘. The state can be seen as a temporary storage, where
information can be stored for later. For the first input element, there is no previous state yet.
This could simply be set to all 0 values, but other initialization approaches exist. The output
for the model is simply the ‘next state‘. Effectively, the state is a piece of memory that is
updated by a neural network for every input element in a sequential manner. Then, after
processing all elements from the input sequence, this state, or memory, is considered to be
an encoded representation of the full input sequence. This way, a fixed-size representation

33

3 Supplementary Material

of a variable-length input sequence is obtained. For this reason, recurrent neural network
were traditionally widely adopted for modelling sequential inputs like sentences.

Unfortunately, there exist some problems with traditional recurrent neural networks. The
main problem is with regards to optimization. In the backward pass, gradients of the loss
with respect to each of the weights are calculated. However, for networks that are too
deep, gradients usually vanish, even when techniques like normalization are used. Another
common problem is that it is difficult to model long-term dependencies using recurrent
neural networks. To clarify this further, consider that the last element of a sequence is
strongly dependent on the first element. In such case, the ability to model it correctly is
determined by the models ability to model long-term dependencies. That is, to know what
the first input element was, when it processes the last input element. In case of recurrent
neural networks, this is theoretically possible. However, every step provides a new state,
and thus completely updates the memory. If the neural network does not know in advance
what input elements will follow, it is difficult to decide which parts of the state, or memory,
have to be kept and which parts can be overwritten.

Several works have been proposed to resolve both these issues by carefully designing the
components of recurrent neural networks. One of the first works to do so was the Long
Short-Term Memory network, or LSTM for short. By carefully designing so called ‘gates‘
as part of the architecture, the model has the ability to carefully add information to, or and
remove information from the state at each step. In a similar way, gated recurrent units (GRU)
Cho et al. [2014] were proposed. The advantages of the GRU is that it is easier and faster
to train due to its fewer gates and thus less parameters. Furthermore, several approaches
exist for processing sequences using recurrent neural networks. For example, bidirectional
LSTM’s exist that model the sequence in two directions, both from start to end and from
end to start. While such approaches can generally improve performance, there currently
exist possibly better approaches that do not rely on recurrent neural networks, as will be
discussed next.

3.5.10 Attention

While the idea behind recurrent neural networks is well thought through, it does have some
shortcomings. One major shortcoming is the fixed-size limited representation of the state, or
the memory. This state is a fixed-size vector that has to hold all the information present in
the given input sequence. The problem is that both very complex and long sequences as well
as very short and simple sequences share the same model, and hence use the same fixed-size
state, or memory. This makes it difficult to choose the size of this fixed-size internal state.

An alternative approach to this sequence-format input is attention Vaswani et al. [2017].
In attention, the important idea is to keep the variable-length representation at each point
throughout the model. Before, with recurrent neural networks, LSTM’s or GRU’s, the size of
the internal state vector had to be manually chosen to be a certain fixed size, which would
need to encode the whole sequence. In attention, the idea is that a state vector is assigned
to each element in the input sequence and that this representation is kept throughout. For
sentences, each word in the input would get its own state vector. Then, the attention op-
erator is used to update each individual state vector with respect to the other elements in
the sequence. Computationally this is of great advantage as each word can be processed
in parallel, while for recurrent neural networks this had to happen sequential. Moreover,
instead of having a single globally shared state vector, each word has its own state vector. In

34

3.5 Deep Learning

Figure 3.7: Schematic overview of attention where the input consists of a sequence of 4
elements. Each element has a 3-dimensional representation. This 3-dimensional represen-
tation is mapped to a 3-dimensional query, key and value vector. Using the query and key
the attention maps are constructed. There are 4 attention maps with 4 attention values
as there are 4 elements in the input sequence. Using the attention maps, the output for
each element is written as a linear, or convex combination of the value vectors of the other
elements, including itself.

mathematical terms, a recurrent neural network has a single state vector v, while in attention
there exists n state vectors; one for every input element as (v0, v,1..., vn−1).

To use attention in such way, a method has to be defined that can update a single element’s
state vector with respect to a variable length sequence that contains the other elements’
state vectors. For this, Vaswani et al. [2017] proposes to use a series of functions; the key,
value, and query. These functions are not contextual, so they do not look at any context.
Instead, these functions only get as input the state vector of each individual element. From
the state vector of an element, a learnable linear layer produces a key, value and query
vector. The main idea is similar to how ‘search‘ is done on for example the web. First, the
query is used to compare against all other keys. So, for each element in the input sequence
the query vector is taken, which is compared against the key vector of all other elements
in the input sequence. Note that this requires s2 comparisons for a sequence length of s.
Doing such a comparison can be done in many different ways, but Vaswani et al. [2017]
proposes to use the scaled dot-product. The dot-product is used to describe the relation
between two vectors, which is scaled down by a fixed constant to avoid large values which
can hinder optimization. Once the dot product for a query with every other key has been
calculated, this gives s similarities for this specific query, corresponding to one specific input
element from the sequence. Then, the these values are turned into a discrete probability
distribution, for which the softmax function is used. The softmax function is a function
that takes unbounded values as input, and outputs a probability distribution. An example
hereof is shown in Figure 3.8. This discrete probability distribution is obtained for each
element in the input, and is called the ‘attention map‘. An attention map corresponds to a
single element of the input sequence, and describes the relation with all other elements of
the input sequence in the form of dividing its 100% attention over all the sequence elements.
Note that the attention map is of size s, and also includes the similarity with itself. A general
overview of attention on sequences is provided in Figure 3.7.

Now, reconsider the original goal; updating an element’s state vector with regards to the
other elements of the sequence. This is where the value vector comes in. For each element
an attention map has now been calculated. This attention map describes how much a given
element depends on other elements in the sequence, and its sums to 100%. As the last step,
the attention map is used to construct new vector values, by using the value vectors. As
the attention map is a discrete probability distribution and sums to 1, it can easily be used
as the weighted average, which can again be implemented using a dot-product. The new
value for a given element is calculated by taking the dot-product of the attention map with

35

3 Supplementary Material

Figure 3.8: An example use of the so f tmax function. Left: random input values that are
unbounded as they are sampled from a normal distribution. Right: the unbounded values
mapped by so f tmax. They are all positive and sum to 1, so they form a discrete probability
distribution.

each value of all elements of the input sequence. Effectively, the new value for an element
becomes the weighted average of all the other elements value vectors, where the weight is
determined via the similarity of the key and query function of the elements, as encoded in
the form of an attention map.

3.5.11 Transformers

While attention in general can be implemented on any sequence of elements, it does have
some problems. One of which is that attention uses a per-pixel mapping function to obtain
the key, query and value vector. These functions have no notion of context, so they cannot
incorporate any information about other elements in the input sequence. Hence, if the input
features are not contextual to begin with, the query, key and value vectors cannot become
contextual either.

In an attempt to resolve this problem, Transformers were proposed Vaswani et al. [2017].
Transformers consist solely of attention layers, followed by an element-wise non-linear block.
Many of these Transformer blocks can be stacked upon each other to obtain deep and pow-
erful sequence-processing models. Skip-connections as well as LayerNormalization Ba et al.
[2016] are used to make training such a network possible, which allows training of very deep
Transformer models. For reference, almost all current-day language models, including the
famous ChatGPT (Generative Pre-Trained Transformers) model, use Transformers in their
architecture.

Spatial Position Information

Transformers and attention on its own have no notion of relative or absolute spatial position.
From the perspective of attention, the sequence of inputs is a set, not a list, so it contains
no explicit order. In an attempt to resolve this, many approaches exist. Early works mostly

36

3.5 Deep Learning

Figure 3.9: Visual overview of the receptive field of a pixel in a second convolutional layer,
with respect to earlier layers. Note that 3 × 3 convolutions are used, and the receptive
field in the output of the second convolutional layer is 5 × 5.

focused on providing the absolute position of an element within a sequence, as the position
of a word in a sentence can have an important impact upon its meaning. A possible way of
doing this is to concatenate the absolute position of an element in the sequence to the state
of the element. Note that without any positional information, a sentence is just a bag of
words with no order, which cannot be interpreted easily and possibly have many different
meanings. More recently, relative positional information is often used. If one can describe
how two elements are positioned relative to each other, this can already be enough and there
is no need to know the absolute position.

3.5.12 Receptive Field

While Transformers were initially designed to take sequences as input, they do solve an
important problem of convolutions. This problem is namely its ability to model long-range
dependencies. Using attention, and hence Transformers, the relation between the first and
last word in a sentence can be modelled just as easy as two subsequent words. In convo-
lutions as used for images, this is not the case. As convolutions work by sliding a small
window over the image, objects that are far away from each other in an image are never to-
gether in a window. However, something to consider is the receptive field of a convolutional
neural network. That is, the effective field of view of a given pixel in the convolutional
layer’s output. To explain this, consider an example where a 3 × 3 kernel is slid over an
image, and thus each new pixel value is based on the 3 × 3 pixels that were in the window
for the given pixel. However, when another convolutional layer is put on top of that, a
pixels at the border of the second convolution window already had a receptive field of the
3 × 3 on the input. Effectively, two stacked convolutions of size 3 × 3 has a receptive field
of 5 × 5 with respect to the input image. A visual example hereof is shown in Figure 3.9.
In theory, stacking many convolutional layers could provide a receptive field that is as large
as the whole input image. Unfortunately, this does not often work in practise. Even though
theoretically it is possible, simple optimization of convolutional neural networks is known
for having issues with modelling long-range dependencies, as the neural network tries to
find local features first.

37

3 Supplementary Material

3.5.13 Vision Transformers

Due to the difficulties with modelling long-range dependencies using convolutions, recent
works have looked at different ways of using Transformers for image data. The difficulty
with that is that Transformers expect sequences as input. While every pixel in an image
could be considered as an element of a sequence, this induces a complexity related problem.
Remember that to build the attention maps, s2 comparisons had to be done for sequence
length s. So, if every pixel becomes an element of the sequence this results in sequence
length s = (h × w) for an image of size h × w. Due to s2 comparisons, this quickly becomes
infeasible. Moreover, the state vector of each input element in Transformers is usually large,
at least several times larger than the 3-dimensional RGB pixel color. Therefore, keeping
(h × w) large state vectors in memory is infeasible and will not work.

To make this idea work, Vision Transformers (ViT) Dosovitskiy et al. [2020] were proposed.
The high-level idea is to first split the input image into non-overlapping patches of size
16 × 16. These individual patches are taken as the input elements in a sequence. Now,
each patch has its own state vector with a dimensionality of 162 × 3 = 768. The 3 comes
from the number of color channels in RGB image data. Note that this approach reduces
the number of elements in the input sequence by a factor 162 = 256. With this reduced
number of input elements, the use of Transformers becomes feasible. Unfortunately, there
exist some problems with this approach, one of which is the lack of a strong inductive bias.
In the section on convolutions, it was explained why simply using linear layers on raw
image data is generally not a good idea. One of the reasons for this was that convolutional
neural networks naturally have properties like translation invariance, where the location of
an object within the image does not matter, as parameters are shared among locations. This
problem strongly relates to ViT networks. While convolutional layers perform local feature
extraction and build context by stacking convolutional layers, ViT model global features
throughout the network. This makes it more difficult for ViT to quickly learn useful features.
As such, ViT models often require enormous datasets and incredibly long training, making
them unsuitable for many applications. However, when the training time and the required
dataset size is not a problem, ViT can outperform convolutional neural networks on many
tasks.

3.5.14 Hierarchical Transformers

While the global modelling capability of Transformers is something that is often considered
a good thing, further research has focused on the use of Transformers while maintaining the
idea of first extracting local features. One such idea is SwinFormer Liu et al. [2021]. In their
work, the idea of local attention is used. In local attention, attention is used within a sliding
window in a similar manner to convolutions. This way, the computational complexity is
strongly reduced, as there no longer exists the need to compute the similarity with every el-
ement of the sequence, but instead only with all elements within the window. Additionally,
the network can only learn local features in the first layers, bringing back the hierarchical
properties of convolutional neural networks. Similarly, Neighborhood Attention Transform-
ers (NAT) Hassani et al. [2022] has been proposed. By stacking multiple NAT layers the
receptive field can be increased, effectively providing it with the advantages of attention
while also taking advantage of the hierarchical structure of convolutional neural networks.
These advantages include faster training, a reduced number of parameters, the need for less
data, and the ability to model global dependencies more easily.

38

3.6 Deep Learning for Optical Flow

3.6 Deep Learning for Optical Flow

3.6.1 Correlation Volumes

The problem of optical flow can be formulated as a brute force problem. That is, for every
pixel in image1, compare it to every possible position in image2. However, as image2 has
infinitely many possible positions, doing a brute-force search is not possible. Interestingly,
image2 is already a discrete representation, as it consists of pixels. Inspired by this concept,
a brute-force approach can be used to compare every pixel in image1 with every pixel in
image2. Unfortunately, this is computationally infeasible as this would require h2w2 com-
parisons. In correlation volumes, the same idea is used, but instead on image patches rather
than individual pixels. While that does not change anything about the complexity of the
calculation itself, it does strongly reduce the number of calculations that need to be done.
Rather than doing h2w2 comparisons, this is reduced to (h/p)2(w/p)2 comparisons, where
p is the patch size. Comparing two patches is usually done using an operator like a dot-
product between the feature vectors of the patches, which gives a single scalar value that
describes the correlation between the two patches. The resulting correlation volume is then
4-dimensional of size ((h/p), (w/p), (h/p), (w/p)). In other words, this correlation volume
describes the correlation of every patch in image1, with every patch in image2.

3.6.2 Feature Extraction

So far the use of feature vectors for patches was mentioned, but not how they are obtained.
When looking for a similarly looking patch, doing this based on the patch content directly
is generally a bad idea. The reason for this is that such a representation is not contextual.
For example, between image1 and image2 lighting might change and a patch might change
color completely, even though it still contains the same object. Looking for a comparison
solely based on pixel colors will not work in such case. Something else to consider is that
something that is in the middle of a patch in image1, could be right in between two patches
in image2. Doing an exact comparison of pixel values between these patches will likely not
result in high positive correlation as is needed. In an attempt to resolve these issues, fea-
tures vectors from patches are usually generated using some sort of a convolutional neural
network. This network has a larger receptive field, so it can model some notion of the con-
text. As this convolutional neural network is learnable, it is left to the network itself to learn
useful features such that the dot-product as used for the correlation volume provides useful
information to the final objective. Note that this can be used to build patches of size (p × p)
by taking images as input with size (h × w) and outputting size ((h/p) × (w/p)) feature
maps. In these feature maps, every cell corresponds to a (p × p) patch of the input image.

3.6.3 Optical Flow as Optimization

One of the most important recent improvements in optical flow came with RAFT Teed and
Deng [2020]. As a result, many recent works all build upon this architecture. Once the
correlation volume is obtained, converting it into optical flow is not straightforward. The
reason for this is that a certain patch may have multiple matches. For example, if the same
object can be found in the image multiple times at multiple locations, there can exist multiple
patches with high correlation in the correlation volume. Then, logical reasoning is required

39

3 Supplementary Material

to convert the correlation volume into optical flow. To do so, RAFT formulates optical
flow as an optimization problem. For every pixel, the initial displacement is set to (0, 0).
Then, multiple optimization steps are taken. At each step, a neural network is provided
with information of the surroundings with respect to the current location. Then, the neural
network is given the objective to provide a ∆ f low with respect to its current location. Doing
this repeatedly, effectively makes it similar to gradient descent. However, where for gradient
descent the gradient is calculated mathematically, here a neural network has the objective to
provide a useful gradient, ∆ f low. Doing this step-wise through many layers makes it difficult
for the gradient to propagate backwards. As a solution, a convolutional gated recurrent unit
is used. This is effectively similar to a normal gated recurrent unit, but with convolutions
instead of plain linear layers. This allows it to model a sequence of images, rather than a
sequence of elements.

3.6.4 Upsampling

Interpolation

Due to the computational cost of the correlation volumes, almost all recent works output
flow at a resolution that is 8 times smaller than the input images image1 and image2. This
is done by setting the patch size to be 8 × 8. While this works well in many cases, it does
have some drawbacks. One of which is the need for upsampling as the final step. While
upsampling in general is not new, the specific properties of optical flow make it difficult
to use traditional methods. For instance, if some object moves in direction −a, and the
background moves in direction +a, consider what happens when using interpolation. Using
interpolation, new values can be created with values from [−a,+a] (inclusive). However, for
optical flow we know that all values (−a,+a) (exclusive) are wrong for sure. For a pixel
between these two objects, it either is part of the one object and moves into direction −a,
or is part of the other object that moves in direction +a. Anything else is definitely wrong.
For simplicity, we do not consider the cases where values from (−a,+a) (exclusive) are
actually the right answer, as this can happen due to it being the actual direction of motion
as a result of rotation, but this is not a result interpolation in any way. Unfortunately,
this insight makes practically all upsampling techniques that are based on interpolation
unsuitable. Alternatively, nearest neighbor upsampling exists. However, when upsampling
by a multiple of factor 2, nearest neighbor upsampling will simply make all sub-pixels the
color of the parent low-resolution pixel, and hence will not align flow edges with object
edges. Therefore, flow edges will become strongly jagged.

Convex Upsampling

The interpolation problem on optical flow becomes worse for larger upsampling factors.
In early works on optical flow an upsampling factor of 2 was often needed, making the
traditional upsampling approaches using interpolation quite common. However, when the
upsampling factor is as large as 8, there are lots of edge values that are all wrong due to
interpolation. To solve this, convex upsampling was proposed by RAFT Teed and Deng
[2020]. Effectively, their idea is highly similar to interpolation methods, but rather than to
interpolate based on the distance to the neighbor pixels, the weights for which pixel value
to adopt are predicted as part of the model output. While traditional upsampling methods

40

3.6 Deep Learning for Optical Flow

usually do not have any learnable parameters, it should be noted that the convex upsampler
does have learnable parameters that are used to predict these weights.

41

Bibliography

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J. (2012). A naturalistic open source movie
for optical flow evaluation. In Computer Vision–ECCV 2012: 12th European Conference on
Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI 12, pages 611–625.
Springer.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statisti-
cal machine translation. arXiv preprint arXiv:1406.1078.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt,
P., Cremers, D., and Brox, T. (2015). Flownet: Learning optical flow with convolutional
networks. In Proceedings of the IEEE international conference on computer vision, pages 2758–
2766.

Hassani, A., Walton, S., Li, J., Li, S., and Shi, H. (2022). Neighborhood attention transformer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. pmlr.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 10012–10022.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., and Brox, T. (2016).
A large dataset to train convolutional networks for disparity, optical flow, and scene flow
estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4040–4048.

43

Bibliography

Menze, M. and Geiger, A. (2015). Object scene flow for autonomous vehicles. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 3061–3070.

Teed, Z. and Deng, J. (2020). Raft: Recurrent all-pairs field transforms for optical flow. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part II 16, pages 402–419. Springer.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Wu, Y. and He, K. (2018). Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pages 3–19.

44

	Introduction
	Scientific Article
	Supplementary Material
	Traditional Optical Flow
	Learning-Based Optical Flow
	Datasets
	FlyingChairs
	FlyingThings3D
	Sintel
	KITTI

	Prior Knowledge
	Deep Learning
	Learning-based Models
	Objective
	Deep Neural Network Layers
	Vanishing Gradients and Normalization
	Skip Connections
	Regularization
	Weight Initialization
	Convolutions
	Recurrent Neural Networks
	Attention
	Transformers
	Receptive Field
	Vision Transformers
	Hierarchical Transformers

	Deep Learning for Optical Flow
	Correlation Volumes
	Feature Extraction
	Optical Flow as Optimization
	Upsampling

